Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Pressure-dependent regulation of Ca2+ signaling in the vascular endothelium

Wilson, Calum and Saunter, Christopher D. and Girkin, John M. and McCarron, John G. (2015) Pressure-dependent regulation of Ca2+ signaling in the vascular endothelium. Journal of Physiology, 593 (24). pp. 5231-5253. ISSN 1469-7793

Text (Wilson-etal-JoP2015-pressure-dependent-regulation-of-ca2+-signaling-in-the-vascular-endothelium)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


The endothelium is an interconnected network upon which hemodynamic mechanical forces act to control vascular tone and remodeling in disease. Ca2+ signaling is central to the endothelium's mechanotransduction and networked activity. However, challenges in imaging Ca2+ in large numbers of endothelial cells under conditions that preserve the intact physical configuration of pressurized arteries have limited progress in understanding how pressure-dependent mechanical forces alter networked Ca2+ signaling. We developed a miniature wide-field, gradient-index (GRIN) optical probe designed to fit inside an intact pressurized artery which permitted Ca2+ signals to be imaged with subcellular resolution in a large number (∼200) of naturally-connected endothelial cells at various pressures. Chemical (acetylcholine) activation triggered spatiotemporally-complex, propagating IP3-mediated Ca2+ waves that originated in clusters of cells and progressed from there across the endothelium. Mechanical stimulation of the artery, by increased intraluminal pressure, flattened the endothelial cells and suppressed IP3-mediated Ca2+ signals in all activated cells. By computationally modeling Ca2+ release, endothelial shape changes were shown to alter the geometry of the Ca2+ diffusive environment near IP3 receptor microdomains to limit IP3-mediated Ca2+ signals as pressure increased. Changes in cell shape produce a geometric, microdomain-regulation of IP3-mediated Ca2+ signaling to explain macroscopic pressure-dependent, endothelial-mechanosensing without the need for a conventional mechanoreceptor. The suppression of IP3-mediated Ca2+ signaling may explain the decrease in endothelial activity as pressure increases. GRIN imaging provides a convenient method that provides access to hundreds of endothelial cells in intact arteries in physiological configuration.