Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Pressure-dependent regulation of Ca2+ signaling in the vascular endothelium

Wilson, Calum and Saunter, Christopher D. and Girkin, John M. and McCarron, John G. (2015) Pressure-dependent regulation of Ca2+ signaling in the vascular endothelium. Journal of Physiology, 593 (24). pp. 5231-5253. ISSN 1469-7793

[img]
Preview
Text (Wilson-etal-JoP2015-pressure-dependent-regulation-of-ca2+-signaling-in-the-vascular-endothelium)
Wilson_etal_JoP2015_pressure_dependent_regulation_of_ca2_signaling_in_the_vascular_endothelium.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

The endothelium is an interconnected network upon which hemodynamic mechanical forces act to control vascular tone and remodeling in disease. Ca2+ signaling is central to the endothelium's mechanotransduction and networked activity. However, challenges in imaging Ca2+ in large numbers of endothelial cells under conditions that preserve the intact physical configuration of pressurized arteries have limited progress in understanding how pressure-dependent mechanical forces alter networked Ca2+ signaling. We developed a miniature wide-field, gradient-index (GRIN) optical probe designed to fit inside an intact pressurized artery which permitted Ca2+ signals to be imaged with subcellular resolution in a large number (∼200) of naturally-connected endothelial cells at various pressures. Chemical (acetylcholine) activation triggered spatiotemporally-complex, propagating IP3-mediated Ca2+ waves that originated in clusters of cells and progressed from there across the endothelium. Mechanical stimulation of the artery, by increased intraluminal pressure, flattened the endothelial cells and suppressed IP3-mediated Ca2+ signals in all activated cells. By computationally modeling Ca2+ release, endothelial shape changes were shown to alter the geometry of the Ca2+ diffusive environment near IP3 receptor microdomains to limit IP3-mediated Ca2+ signals as pressure increased. Changes in cell shape produce a geometric, microdomain-regulation of IP3-mediated Ca2+ signaling to explain macroscopic pressure-dependent, endothelial-mechanosensing without the need for a conventional mechanoreceptor. The suppression of IP3-mediated Ca2+ signaling may explain the decrease in endothelial activity as pressure increases. GRIN imaging provides a convenient method that provides access to hundreds of endothelial cells in intact arteries in physiological configuration.