
This version is available at https://strathprints.strath.ac.uk/55074/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Effect of flow conditions on the swimming efficiency of Dunaliella Salina in microfluidic contraction devices

The economic and ecological importance of microorganisms and their fundamental functions in different contexts is well-documented. They constitute the major part of the world's biomass, represent the lowest level of the food chain [1] and are utilised in a wide range of applications that encompass food and beverage preparation, genetic engineering and renewable energy. [2, 3] Some microorganisms can swim and propel themselves and are termed as microswimmers; the definition includes bacteria, spermatozoa, unicellular, colonial algae and protozoans. [1] This work focuses on the fluid dynamic behaviour of Dunaliella Salina (DS) (a type of halophile green micro-algae found in hypersaline environments) in microfluidic contraction-expansion geometries for varying flow conditions, in order to engineer the motion of the cells and enhance the efficiency of their applications. Experimental investigation is currently underway considering different microfluidic abrupt contraction-expansion geometries with different contraction ratios (CR = 2, 4 and 8), including the visualisation of the algae’s motion using an inverted microscope, and tracking their motion using software, such as cellSens®. Matlab and ImageJ in order to understand the algae’s behaviour and how their motion is influenced by the surrounding environment and flow conditions. We have been able to distinguish three regimes: one in which the mean flow velocity is relatively small compared to the algae swimming speed and DS cells swim randomly; a second t where the flow begins affecting the algae behaviour but the cells can still partially withstand the flow rate; and a third where the flow advection dominates over motility and algae trajectories tend to the fluid streamlines.