
This version is available at https://strathprints.strath.ac.uk/55073/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Optimisation of a microfluidic converging channel for extensional measurements

Konstantinos ZOGRAFOS1,*, Manuel A. ALVES2, and Mónica S. N. OLIVEIRA1

*Corresponding author: Tel.: +44 (0) 1415745051; Email: konstantinos.zografos@strath.ac.uk
1James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XQ, Glasgow, UK
2Centro de Estudos de Fenómenos de Transporte, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, 4200-465, Porto, Portugal

Abstract: Strong extensional flows are important for many scientific and industrial applications, especially for non-Newtonian fluids where measurements of extensional properties, such as extensional viscosity, are important. Converging geometries are known for their ability to stretch the fluid in a strong extensional flow along the centreline [1]. At the macroscale, converging channels used as extensional rheometers are usually axisymmetric and operate only with highly viscous fluids to reduce inertial effects. Microfluidic flows are characterised by high deformation rates under small Reynolds numbers (Re), offering a promising platform for investigating fluids described by complex rheological behaviour.

The shape of the converging geometry must be carefully designed for achieving the desired velocity profile, and producing a region of homogeneous extensional flow with constant strain rate. The total strain experienced by a fluid element is quantified using the total Hencky strain \(\varepsilon_H = \ln(w_u/w_c) \), where \(w_u \) is the upstream width and \(w_c \) is the minimum width at the contraction. An in-house CFD code based on a fully-implicit finite volume method [2] combined with a mesh deformation code based on NURBS, are coupled with NOMAD optimiser [3] for optimising the shape of a converging geometry, that approaches the target velocity and strain-rate profiles for various \(\varepsilon_H \). Newtonian fluids were examined under creeping flow conditions (Re \(\rightarrow \) 0), which is a reasonable approximation in microfluidics, considering a 2D fluid flow and then extended to 3D. Following that, geometry optimisation was performed for a viscoelastic fluid using the Oldroyd-B model, and its response was assessed for increasing Deborah numbers.