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A generalization of the random geometric graph (RGG) model is proposed by considering

a set of points uniformly and independently distributed on a rectangle of unit area instead

of on a unit square [0, 1]2 . The topological properties, such as connectivity, average degree,

average path length and clustering, of the random rectangular graphs (RRGs) generated by

this model are then studied as a function of the rectangle sides lengths a and b = 1/a, and

the radius r used to connect the nodes. When a = 1 we recover the RGG, and when a→∞

the very elongated rectangle generated resembles a one-dimensional RGG. We provided

computational and analytical evidence that the topological properties of the RRG di�er

signi�cantly from those of the RGG. The connectivity of the RRG depends not only on the

number of nodes as in the case of the RGG, but also on the side length of the rectangle.

As the rectangle is more elongated the critical radius for connectivity increases following

�rst a power-law and then a linear trend. Also, as the rectangle becomes more elongated

the average distance between the nodes of the graphs increases, but the local cliquishness of

the graphs also increases thus producing graphs which are relatively long and highly locally

connected. Finally, we found the analytic expression for the average degree in the RRG as a

function of the rectangle side lengths and the radius. For di�erent values of the side length,

the expected and the observed values of the average degree display excellent correlation,

with correlation coe�cients larger than 0.9999.

PACS: 89.75.-k; 02.10.Ox

I. INTRODUCTION

The use of graphs for representing physical systems is becoming ubiquitous in many

areas of theoretical and applied physics [1]. We can mention the use of graphs in statistical

mechanics and condensed matter physics, for solving Feynmann integrals as well as in the

study of quantum phenomena [1, 2]. More recently, the use of graphs has been very broaded

by their application in the analysis of complex systems [3�5]. In this case, those graphs

receive the name of complex networks, due to the fact that they represent the skeleton

of complex interconnected systems. In this case, networks are used to study a variety of

physical scenarios, ranging from social and infrastructural, to biological and ecological ones.

Here, we will use the terms graphs and networks interchangeably. When graphs are used

to represent real-world physical systems it is necessary to have at our disposal some null
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model that allows us to evaluate which properties of the system have arisen from their

connectivity pattern. In this sense, the common election is the use of random graphs. That

are graphs with the same number of nodes and edges as the one under study, but in which the

connection between the nodes is made randomly and independently [6]. There are several of

these random models of great usability in current network theory, such as the Erdös-Rényi

[8], the Barabási-Albert [9] or the Watts-Strogatz [10] model to mention just three.

In many real-world scenarios the networks emerge under certain geometrical constraints.

This is the case of the so-called spatial networks [11], which include infrastructural networks

such as road networks, airport transportation networks, etc., [11] and certain biological

networks such as brain networks or the networks representing the proximity of cells in a

biological tissue (see [3]). The list also includes the networks of patches and corridors in

a landscape [12], the networks of galleries in animal nests [13, 14], and the networks of

fractures in rocks [15], among others. The classical election of a random graph used to

represent these systems are the so-called random geometric graphs [16, 17]. Here the term

random geometric graph (RGG) is reserved for the case in which the nodes of the graph are

distributed randomly and independently in a unit square and two nodes are connected if

they are inside a disk of a given radius. Other graphs in which the edges are constructed by

using di�erent geometric rules will be named here generically as random proximity graphs.

RGGs have found important applications in the area of wireless communication devices

[18�20], such as mobile phones, wireless computing systems, wireless sensor networks, etc.

This was indeed the �rst application in mind when Gilbert proposed the very �rst RGG

model [21]. RGGs have also found applications in areas such as modelling of epidemic

spreading in spatial populations, which may include cases such the spreading of worms in

a computer network, viruses in a human population, or rumors in a social network [22�

26]. RGGs have been used to describe how cities have been evolving under the geometric

constraints imposed by their geographic locations [27]. For a wider perspective on the

applications of spatial graphs the reader is referred to the review [11].

In all the previously mentioned real-world scenarios, the shape of the location in which

the nodes of the graph are distributed may play a fundamental role in the topological

and dynamical properties of the resulting graphs. That is, it is intuitive to think that the

connectivity, distance, clustering and other fundamental topological properties of the graphs

are a�ected if we, for instance, elongate the unit square in which the points are distributed.
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Here, we develop a new model that generalizes the RGG by allowing the embedding of the

nodes in a unit rectangle instead of a unit square. Our main goal is to investigate how

the elongation of a unit square in�uences the topological properties of the graphs generated

by the model. This generalized graphs will be named here the random rectangular graphs

(RRGs). In this work we concentrate on the in�uence of the ratio of the lengths of the

two sides of the rectangle on the topological properties of the graphs emerging on them,

such as their connectivity, average degree, average path length and clustering coe�cient.

In particular, we �nd the analytical expression of the average degree. The average degree

is a simple but highly important property of graphs, which is related to several dynamical

processes.

II. DEFINITION OF THE MODEL

The RGG is de�ned in general by distributing uniformly and independently n points in

the unit d-dimensional cube [0, 1]d [16]. Then, two points are connected by an edge if their

Euclidean distance is at most r, which is a given �xed number known as the radius.

Let us now de�ne a unit hyperrectangle as the Cartesian product [a1, b1]× [a2, b2]× · · ·×

[ad, bd] where ai, bi ∈ R, ai ≤ bi, and 1 ≤ i ≤ d. Hereafter we will restrict ourselves to the

2-dimensional case, which corresponds to a rectangle of unit area, that we will call the unit

rectangle. Now, the RRG is de�ned by distributing uniformly and independently n points in

the unit rectangle [a, b] and then connecting two points by an edge if their Euclidean distance

is at most r. It is evident that the only change we have introduced here is to consider a

rectangle of unit area instead of the analogous square. The rest of the construction process

remains the same as for the RGG. This means that RRG → RGG as (a/b) → 1. In this

sense we can say that the RRG is a generalization of the RGG. In Fig. 1 we illustrate an

RGG and an RRG constructed with the same number of nodes and edges.

An interesting question is what happen at the other extreme, when a → ∞. In this

case we have that b → 0, which means that the n points are uniformly and independently

distributed on the straight line. Let us now consider a disk of radius r > 0 centered at each

of these points and let us connect every point to the other points which lie inside its disk. For

very small values of r each node can only be connected to its nearest neighbors in such a way

that the whole graph is a path or a collection of paths of di�erent lengths. As r →∞, a node

4



(a)

(b)

Figure 1. Illustration of two random rectangular graphs with a = 1 (top), which corresponds to

a random geometric graph on a unit square and with a = 2 (b = 0.5) (bottom). Both graphs are

built with 500 nodes and 1750 edges.

is connected not only to its nearest neighbors but to second, third, and so forth, forming

a one-dimensional random graph. Thus, the resulting graph resembles a one-dimensional

RGG, that is a graph created by placing the n points uniformly and independently on the

interval [0, 1] and then connecting pairs of nodes if they are at a Euclidean distance smaller

or equal than certain radius r (see for instance [28�30]).
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III. COMPUTATIONAL ANALYSIS OF RRG

In this section we study computationally a few topological properties of the RRGs. In

the following we will consider RRGs with a = 1/b and consequently we will report only the

value of a. For instance, a = 1 represents a unit square and the RRG is identical to the

classical RGG. For a = 5 we have a very elongated rectangle with sides a = 5 and b = 0.2.

We study here some important structural parameters of networks, such as the connectivity,

average degree, average path length and the average clustering coe�cient.

3.1 Connectivity and average node degrees

In the case of the RGGs it is a well known result that increasing the radius of the disks

centered at each point produces a phase transition from a disconnected to a connected graph

at certain critical radius. That is, for

πr2 =
log n+ γn

n
, (1)

the RGG is connected if n → ∞ and γn → ∞ and disconnected if γn → −∞ [16]. In

the Fig. 2(a) we illustrate this result for a RGG with n = 100 nodes, i.e., a = 1, where it

can be seen that the critical radius is about 0.25, which corresponds to a value of γn ≈ 15.

As the square is elongated the critical radius increases with the value of a. For instance, for

a = 5 the critical radius is about 0.5, and for a = 30 it is about 3. The main reason for this

increase in the critical radius is that as we elongate the rectangle the points have to cover

a longer region of the rectangle and as so their separation increases. As a consequence, we

need to increase the radius in order to guarantee the connectivity of the network. As can be

seen in the Fig. 2 (b) there is a linear trend between the length of the side of the rectangle

and the critical radius of the RRGs for values of a ? 5. For the values 1 ≤ a . 5 the relation

between the critical radius and the side length of the rectangle is a power-law of the form

rc ∼ a3.72.

We now analyze the average degree of the nodes in the RRGs. A well-known result in

the theory of RGGs, i.e, when a = b = 1, is that the average degree is approximated by

〈k〉 ' πr2n [16], such that 〈k〉 ∼ r2. This relation is only true for very small values of r

because for larger radii it is known that the border e�ects play a fundamental role in the
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Figure 2. (color online) Probability that the RRG is connected as a function of the radius for

graphs with n = 100 (a). Dependence of the critical radius for connectivity with the side length of

the rectangle for general (b) and small values of a (c). Every point is the average of 1000 random

realizations

deviations from this scaling. For larger values of r it is expected that 〈k〉 ' n− 1 due to the

higher density of the resulting graph. Consequently, the change of 〈k〉 with r is expected

to be quadratic for small r and then change its behavior for larger values of the radius as a

consequence of the increase in the border e�ects. In the case of the RRGs the border e�ects

along the longest edge of the rectangle are much bigger than for the unit square. Thus, we

would expect that this transition from the quadratic to the non-quadratic behavior is more

dramatic in the RRG than in the RGG. This is illustrated in the Fig. 3, where it can be

seen that in the RGG the quadratic approximation is indeed very good for values of the

radius 0 < r ≤ 0.3. In a RRG with a = 2 this quadratic approximation is still good for

small values of the radius. However, as it can be seen, the linear approximation is better for

the RRG with a = 2 than for the RGG. The straight line shown in both plots corresponds

to the expected linear relation between 〈k〉 and r if we consider that the circle of small

enough radius r around a typical node can be well-approximated by a very thin rectangle of

length 2r and width b. In this case 〈k〉 ' (2b) r, where obviously 2b is a constant for a given

rectangle and a linear trend instead of a quadratic one is expected. If we elongate more

the rectangle, e.g., by taking a = 30 (see Fig. 3 (right)), this linear approximation remains

for a wider range of the radii 0 < r ≤ 5, which indicates that indeed it corresponds to the

approximation of the circle by a thin rectangle when the RRG is very narrow. In this case

the quadratic approximation is very bad and only valid for a very narrow region of values
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of the radius.

(a) (b) (c)

Figure 3. Illustration of the change in the average degree with the radius for (a) a random geometric

graph in a unit square, (b) a random rectangular graph with a = 3, and (c) with a = 30. All graphs

have n = 100. The dotted line corresponds to the quadratic approximation of 〈k〉 with r (see text)

and the solid line corresponds to its linear approximation.

An important observation extracted from the plots of the average degree versus the radius

is the existence of three di�erent regimes in these plots. Due to their sigmoid shapes we

observe that the dependance of the average degree with the radius is di�erent for the regions

0 ≤ r ≤ b, b ≤ r ≤ a and a ≤ r ≤
√
a2 + b2. This is important because we will use these

three regimes for the analytic calculation of the average degree in general RRGs.

3.3 Average path length and clustering

Let Γ = (V,E) be a simple connected graph. A path of length k in Γ is a set of nodes

i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k, (il, il+1) ∈ E with no repeated nodes. The

shortest-path or geodesic distance between two nodes u, v ∈ V is de�ned as the length of the

shortest path connecting these nodes. We will write d(u, v) to denote the distance between

u and v. Here we will call, as usually in network theory, average path length to the following

quantity:

〈l〉 =
2

n (n− 1)

∑
u<v

d (u, v) . (2)
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On the other hand, the local clustering coe�cient of a node u, which quanti�es the degree

of transitivity of local relations in a network is de�ned as [10]:

Cu =
2|{(v, w) : v, w ∈ Nu; (v, w) ∈ E}|

ku(ku − 1)
, (3)

where Nu = {v : (u, v) ∈ E} and ku is the degree of the node u. Taking the mean of

these values as u varies among the nodes in Γ, one gets the average clustering coe�cient of

the network: 〈C〉 = 1
n

∑n
u=1Cu.

We study here graphs with 1000 nodes and 7500 edges. For every value of a we report

the average of 10 random realizations. In the Fig. 4 we illustrate the variation of the

average path length and average clustering coe�cients for these graphs. The plot of 〈l〉

versus a agrees with our intuition that as we elongate the rectangle there are nodes which

are more far apart from each other and as a result the average path length of the whole

graph increases. There is an almost linear increase of 〈l〉 for values of 1 ≤ a . 15 after which

the dependence is very �at. In this region we have that a → ∞, which corresponds to a

good approximation to a one-dimensional RGG. For a = 1 it is known that the average path

length depends on the inverse of the radius, 〈le〉 = Θ (1/r) [31]. The actual radius used for

the plot in Fig. 4 is r = 0.0713 which gives an estimate of the average path length of 14.02,

which is not too far from the observed value in the plot for a = 1. In the case of a = 30 we

are in the presence of a very elongated rectangle, which is very similar to a one-dimensional

RGG. A crude estimate of the average path length in this case would be 〈le〉 = n/ 〈k〉, which

in the current case will give 〈le〉 ≈ 66.6, which is relatively close to the observed value of

〈l〉 ≈ 50 for a = 30.

It is interesting to note that the average clustering coe�cient also increases as the rectan-

gle becomes more elongated. This is a consequence of the fact that we are now compressing

the nodes into a narrower region, which allow them to be locally closer to each other and

create more triangles. However, as soon as a ≥ 15 for these graphs (this value will depend on

the number of nodes of the graph) the dependence of the average path length and clustering

coe�cient with the side length is very �at. This is due to the fact that for large enough

values of a the graphs behave as a one-dimensional random geometric graph.

Let r2 =
log n+ γn

nπ
as in (1), then if n→∞ and γn →∞, it is known that the average

clustering coe�cient is given by [17]
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〈Cd〉 =

 1−Hd (1) d even

3
2
Hd (1/2) d odd,

(4)

where d is the dimension of the hypercube in which the nodes are embedded and

Hd (x) =
1√
π

d/2∑
i=x

Γ (i)

Γ
(
i+ 1

2

) (3

4

)i+ 1
2

, (5)

where Γ (i)is the Gamma function. Thus, for d = 2 , 〈C2〉 = 1 −
3
√

3

4π
≈ 0.5865 and for

d = 1, 〈C1〉 = 3/4 = 0.75.

As can be seen in the Fig. 4 for a = 1 the average clustering coe�cient is 〈C〉 ≈

0.61, which is very close to the expected value for the 2-dimensional RGG. When a =

30 the average clustering coe�cient is 〈C〉 ≈ 0.75, which coincides with the exact value

expected for the one-dimensional RGG. Consequently, the RRG generalizes the values of

the clustering coe�cient of both, the one- and two-dimensional RGG, for a = 1 and a →

∞, respectively. In addition, it provides a series of intermediate values of the clustering

coe�cient for intermediate values of the side length of the rectangle.
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Figure 4. Change of the average path length (left) and average clustering coe�cient (right) in a

RRG with the systematic variation of the side length a of the rectangle for graphs having n = 1000

and 〈k〉 = 15. Every point represents the average of 10 realizations. The standard deviations of

each point are not illustrated for the sake of clarity.
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We now further explore the relation between the radius r and the average path length

and clustering for RRGs with di�erent side lengths. We consider graphs with n = 100 nodes

and the extreme cases a = 1 (RGG) and a = 30. As the radius increases the graph is

becoming more and more dense, which is re�ected in the exponential decay of the average

path length to the value 〈l〉 = 1, which corresponds to that of a complete graph. There is

not substantial di�erences in the decay of the average path length with the increase of the

radius for a = 1 and a = 30. For the average clustering coe�cient the results for both cases

are very similar and they are characterized by an abrupt increase in the clustering at the

beginning of the plot and then a linear increase until the value of 〈C〉 = 1 is reached for the

complete graph.
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Figure 5. (color online) Variation of the average path length with the radius (a), as well as the

variation of the average clustering coe�cient with the radius (b) for graphs with a = 1, 5, 10, 30.

Every point is the average of 100 random realizations.

4 ANALYTICAL RESULTS FOR 〈k〉

Given a node, there are n−1 nodes distributed in the rest of the rectangle. De�neAp to be the

area within radius r of a point p which lies within the rectangle. Since nodes are uniformly

and independently distributed, the expected degree of a node vi is E(ki) = (n− 1)Ai/(ab),

where Ai is taken for the point where node vi is located. This is because dividing the nodes
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between the area within distance r and the rest of the rectangle gives rise to the Binomial

distribution Bin(n−1, Ai/(ab)) as it can be considered like a partition of a Poisson process.

Averaging this over all possible node locations (i.e., the points in the rectangle) gives

E 〈k〉 =

´
p
{(n− 1)Ap/(ab)}

ab
=

(n− 1)
´
p
Ap

(ab)2
(6)

Let f(a, b, r) to be the area within radius r of a point which lies in the rectangle, integrated

over all points, i.e., f(a, b, r) =
´
p
Ap. Based on the computational results obtained for the

average degree we consider here the previously detected regions: 0 ≤ r ≤ b, b ≤ r ≤ a and

a ≤ r ≤
√
a2 + b2, recalling that a ≥ b. We call these cases i = 1, 2, 3, respectively. Thus,

the function f(a, b, r) takes di�erent forms fi for each case i. This means that we can write

E 〈k〉 =
(n− 1)fi

(ab)2
with

fi =


f1 0 ≤ r ≤ b

f2 b ≤ r ≤ a

f3 a ≤ r ≤
√
a2 + b2

(7)

and our task is now to �nd the analytical expressions for fi for these three cases separately.

Case 1

This case corresponds to the covering of each point in the rectangle by a circle of small

radius, 0 ≤ r ≤ b. Let us �x a value of the radius to r. The area of this circle is A, = πr2.

Thus, if we consider intersecting circles covering the whole rectangle of area Ae = ab, the

total area covered is:

A� = A,Ae = πr2ab.

The problem is that many of these circles have segments outside the rectangle. Thus, the

question is to calculate the area coming from the contribution of those circles which are not

entirely inside the rectangle. In order to obtain this contribution we start by considering a

circle with radius 0 ≤ r ≤ b located at the center of the rectangle. We now displace the circle

to the edge of length b of the rectangle and allow that segments of this edge de�ne chords of

the circle. We stop the displacement when there is a semicircle outside (and another inside)

the rectangle. We then have an in�nite collection of segments of the circle (see Fig. 6). We

proceed by stacking each segment of the circle over the other, starting from the semicircle,
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in such a way that they de�ne a section of a cylinder that has been intersected by a plane

as illustrated in the Fig. 6. The sum of the areas of all these segments of the circle equals

the contribution of one circle to the area outside the rectangle. This total area is easy to

calculate by simply considering it equal to the volume of the section of the cylinder:

V =

ˆ r

−r

(
r2 − x2

)
dx =

4

3
r3. (8)

Figure 6. Illustration of the stacking of the segments of the circle which lie out the rectangle (left),

and the section of the cylinder formed by all the stacked segments (right).

Using this volume, which corresponds to the area of a circle outside the rectangle, we can

calculate the total area coming from all circles moving in the direction right-left (R-L) as

well as those moving in the direction top-bottom (T-B). That is, the �rst area is given by

V b and the second is given by V a. The problem is that we are counting twice the area for

some points which are in the square with area r2 which is located at each of the four corners

of the rectangle (see Fig. 7). In order to account for this area we consider a quarter of a

circle (a pie) moving in the R-L direction and don't count the contribution for the area of

the square at the corner. That is, we obtain the total areas in the R-L and T-B directions

as:

AR−L =
1

2
V (b− r), (9)

AT−B =
1

2
V a. (10)
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Figure 7. (color online) Illustration of a circle centered at a point inside the rectangle with sides a

and b and separated from the edges of the rectangle by a distance equal to the radius of the circle

r. The arrows R-L and T-B indicate the directions of displacement of the circle used to calculate

the areas outside the rectangle. The square at the corner which has sides of length equal to r is

shadowed. the section of the circle which is inside this square corresponds exactly to a quarter of

the circle.

For the area of the square at the corner we have already its contribution in the T-B

direction. Now for contribution in the R-L direction we must consider that some quarter

circles protrude both below and to the left of the rectangle. We then calculate the R-L

contribution in such a way that we do not double-count anything

A� =

ˆ r

0

ˆ t

0

1

2

(
r2 − x2

)
dxdt =

5

24
r4. (11)

We are now in condition to calculate the total area of the circles covering only the space

inside the rectangle when 0 ≤ r ≤ b, which is

f1 =A� − 4 (AR−L + AT−B + A�) (12)

=πr2ab− 4

3
(a+ b)r3 +

1

2
r4. (13)
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Notice that we have multiplied the parenthesis in (12) by 4 because we have previously

considered the areas of quarter circles.

Case 2

In this case every point is covered by a circle of radius, b ≤ r ≤ a. We take a similar

approach to the one used in Case 1 with the following adaptation. Taking the bottom-left

quadrant of the circle as before, there is always part of the quarter circle protruding from

the bottom of the rectangle. Equivalently, every circle now protrudes from both the top and

bottom of the rectangle. This makes certain geometric arguments used in Case 1 invalid,

such that the one of being able to �t a square of length r into the rectangle. For points at

distance t from the top edge of the rectangle, the area of this protrusion is
´ r
t

√
r2 − x2dx,

and integrating over t gives

V ′ =

ˆ b

0

ˆ r

t

√
r2 − x2 dx dt

=
1

4
πr2b− (

1

3
r2 +

1

6
b2)
√
r2 − b2 − 1

2
r2b arcsin(

b

r
)

+
1

3
r3 (14)

This considers all the points in a vertical line through the rectangle, so we multiply by

the length a to get

AT−B,2 = aV ′ (15)

In this case we can no longer �t a square of length r inside the rectangle, so we modify

A� accordingly and obtain

A�,2 =

ˆ b

0

ˆ t

0

1

2

(
r2 − x2

)
dxdt

=
1

4
r2b2 − 1

24
b4 (16)

We now obtain the total area f2 in a similar way as for f1

f2 = A� − 4(AT−B,2 + A�,2)

= −4

3
ar3 − r2b2 +

1

6
b4 + a(

4

3
r2 +

2

3
b2)
√
r2 − b2 + 2r2ab arcsin(

b

r
). (17)
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Case 3

In this case the circles have radius a ≤ r ≤
√
a2 + b2. Here we consider a slightly di�erent

approach because the geometry of the system involved changes in relation to the previous

cases. In this case all of the quarter circles protrude from both the left and bottom edges

of the rectangle, and thus all circles extend beyond all sides of the rectangle. This means

that for many points, the overlap between the (bottom-left quadrant) quarter circle and the

rectangle corresponds to a smaller rectangle, though for some points near the top-right this

is not true. We assume �rst that this overlap is always a rectangle and correct this later.

For a point of distance 0 ≤ x ≤ a from the left of the rectangle and distance 0 ≤ y ≤ b from

the bottom the area is xy, and we integrate these rectangular areas over all points to obtain

AR =

ˆ b

0

ˆ a

0

xy dx dy =
1

4
a2b2. (18)

The quarter circles for some points in the top-right do not fully cover the bottom-left of

the rectangle, so we calculate what we must subtract to account for these interior areas. We

consider an a�ected point on the top edge of the rectangle, and displace this in the T − B

direction. This produces shapes such as in Fig. 8 (left), which may be stacked in a similar

way to the circular segments of Case 1 to produce a solid with the shape illustrated in the

Fig. 8(right).

We now calculate the volume of a point at distance
√
r2 − b2 ≤ t ≤ a from the top-left

corner of the rectangle, and make use of the fact that its cross-sections in one axis are right

triangles

V ′′ =

ˆ t

√
r2−b2

1

2
(b− y)2 dx (19)

We now integrate this over t, to �nd the value AI which we subtract to account for the

interior areas

AI =

ˆ a

√
r2−b2

V ′′dt =
1

4
(a2b2 + a2r2 + b2r2)− 1

24
(a4 + b4) +

1

8
r4

− b(1

3
r2 +

1

6
a2)
√
r2 − a2 − a(

1

3
r2 +

1

6
b2)
√
r2 − b2

+
1

2
abr2(arccos(

b

r
)− arcsin(

a

r
)). (20)

We now have everything we need to write f3, which has the following form

16



(a) (b)

Figure 8. Illustration of the interior areas which are not covered by the quarter circles, which get

smaller as the quarter circle is displaced downwards (left), and the solid formed by all the stacked

areas (right). Note that the cross-sections along the horizontal axis are right triangles

f3 = 4(AR − AI)

= −r2(a2 + b2) +
1

6
(a4 + b4)− 1

2

+b(
4

3
r2 +

2

3
a2)
√
r2 − a2 + a(

4

3
r2 +

2

3
b2)
√
r2 − b2

−2abr2(arccos(
b

r
)− arcsin(

a

r
)) (21)

In the next section of this work we compare these analytical results with the average

degree observed for di�erent RRGs.

5 ANALYTICAL VS. COMPUTATIONAL RESULTS FOR 〈k〉

Here we analyze the goodness of �t of the values of the average degree observed in RRGs

as a function of the radius for di�erent values of the sides of the rectangle. We recall that

the expected average degree of a RRG is given by

E 〈k〉 =
(n− 1)fi

(ab)2
, (22)

where
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fi =



0 ≤ r ≤ b πr2ab− 4
3
(a+ b)r3 + 1

2
r4

b ≤ r ≤ a −4
3
ar3 − r2b2 + 1

6
b4 + a(4

3
r2 + 2

3
b2)
√
r2 − b2

+2r2ab arcsin( b
r
)

a ≤ r ≤
√
a2 + b2 +b(4

3
r2 + 2

3
a2)
√
r2 − a2 + a(4

3
r2 + 2

3
b2)
√
r2 − b2

−2abr2(arccos( b
r
)− arcsin(a

r
)).

(23)

In the Fig. 9 we illustrate the results for three RRGs with n = 100 nodes and values

of a = 1, 3, 30, respectively. The solid circles represent the observed values of the average

degree for the corresponding graphs averaged over 100 random realizations. The solid line

is the expected values according to the expressions (22) and (23). The Pearson correlation

coe�cients for the linear regression between the observed and expected values is larger than

0.9999 in the three cases. We enlarge the region of small radii for the case a = 30 (see

Fig. 9) where it can be seen that it is a perfect �t also for this region, here the Pearson

correlation coe�cient is 0.994.
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Figure 9. (color online) Illustration of the �t between the observed (black circles) and expected

(solid line) values of the average degree for RRGs with di�erent side lengths of the rectangle. (a)

An RGG with a = 1, 3, 30, (b) a = 30 for small radii.
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6 CONCLUSIONS AND FUTURE OUTLOOK

We have introduced here a generalization of the RGG in which we embed the points into

a unit rectangle instead of on a unit square. We consider a rectangle with sides of lengths

a and b = 1/a, such as when a = 1 we have the particular case of the `classical' random

geometric graph embedded in a unit square. Also, when a → ∞ we have a very elongated

rectangle which resembles a one-dimensional RGG. We have provided computational and

analytical evidence that rea�rm the fact that the topological properties of the RRG di�er

signi�cantly from those of the RGG. We have seen that the connectivity of the RRG depends

not only on the number of nodes as in the case of the RGG, but also on the length of the

side of the rectangle. In particular, as the length of the side of the rectangle increases, i.e.,

the rectangle is more elongated, the critical radius for connectivity increases following �rst

a power-law and then a linear trend. In other words, by keeping the number of nodes and

the radius constant, the connectivity increases as the area in which the points are located

is more regular, i.e., more squared.

The analysis of the average path length and clustering coe�cient indicate that as the

rectangle becomes more elongated the average distance between the nodes of the graphs

increases due to the fact that the nodes have to cover a longer region in the rectangle than

in the square. However, the graphs are also locally more connected as a → ∞ as re�ected

by the increase in the average clustering coe�cient. Then, the elongation of the rectangle

makes graphs which are relatively long and highly locally connected.

We also found the analytic expression for the average degree in the RRG. In this case

we have discovered that there are three regimes for the values of the radius in terms of

the length of the sides of the rectangle. The expected value of the average degree is then

expressed as functions of the lengths of the rectangle and the radius. We have shown that

for di�erent values of the side length, the expected and the observed values of the average

degree display excellent correlation, with correlation coe�cients larger than 0.99.

The introduction of the RRGs open new possibilities for studying spatially embedded

random graphs. There are many open questions that derive from this work, such as the

search for analytical expressions for the average path length, clustering coe�cient and other

topological properties as a function of the side length of the rectangle. Also the study

of dynamical processes taking place on the nodes and edges of these graphs is of great
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interest to explore how the shape constraints in�uence the dynamics on the RRGs. The

analysis rectangular proximity graphs, such as the rectangular Gabriel graphs and random

rectangular neighborhood graphs on is also interesting for many of the practical applications

of these graphs as mentioned in the introduction. The generalization of the RRG model to

higher dimensions is also of both theoretical and practical interest. In closing, the current

work is expected to open new horizons for the study of random spatial graphs and its

applications in physics and beyond.
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