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In this paper we look at the two dimensional stochastic differential equation (SDE)

susceptible-infected-susceptible (SIS) epidemic model with demographic stochasticity where

births and deaths are regarded as stochastic processes with per capita disease contact rate

depending on the population size. First we look at the SDE model for the total population

size and show that there exists a unique non-negative solution. Then we look at the two di-

mensional SDE SIS model and show that there exists a unique non-negative solution which

is bounded above given the total population size. Furthermore we show that the number of

infecteds and the number of susceptibles become extinct in finite time almost surely. Lastly,

we support our analytical results with numerical simulations using theoretical and realistic

disease parameter values.
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1. Introduction

One of the simplest possible models for how diseases spread amongst a population is the susceptible-infected-susceptible

(SIS) epidemic model. In this model a typical individual starts off susceptible, at some stage catches the disease and after a

short infectious period becomes susceptible again. Such a model is appropriate for a bacterial disease such as pneumococcus or

sexually transmitted diseases such as gonorrhea. It is sometimes used as an approximate model for tuberculosis and can also be

used to model the common cold [1–3]. The SIS model is strictly speaking not applicable for tuberculosis as infection provides

partial immunity to re-infection but it can be used as an approximate model [4].

If S(t) denotes the number of susceptibles at time t and I(t) denotes the number of infecteds at time t then the spread of the

disease is described by the pair of differential equations

dS

dt
= μN − βS(t)I(t) + γ I(t) − μS(t), (1.1)

dI

dt
= βS(t)I(t) − (μ + γ )I(t) (1.2)

with appropriate starting values S(0) and I(0) with S(0) + I(0) = N. In these equations μ is the rate at which a single individual

dies and γ is the per capita rate at which a single individual recovers. Hence assuming that the infectious period follows an
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exponential distribution the average infectious period is 1/γ . β is the rate at which a single infected individual makes contact

with and infects each susceptible individual, so that β = λ/N, where λ is the per capita disease contact rate of a single infected

individual.

A key concept in mathematical epidemiology is the idea of the basic reproduction number R0. This is defined as the expected

number of secondary cases produced by a single newly infected individual entering a disease-free population at equilibrium [5].

We find that

R0 = βN

μ + γ
.

If a single newly infected individual enters a disease free population then this person dies at rate μ and becomes susceptible

at rate γ and stays in this state for time 1/(μ + γ ). During this time he or she makes potentially infectious contacts with the

susceptible individuals present each at rate β and if N is large there are approximately N of them. So the average number of

infections made during the infectious period is βN/(μ + γ ) which is thus R0 as stated above.

This model is discussed by Hethcote [6] and Brauer in Brauer et al. [5]. It is equivalent to the well-known logistic equation for

population growth and has a solution given by

I(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
β

βN − μ − γ
(1 − e−(βN−μ−γ )t ) + 1

I0
e−(βN−μ−γ )t

]−1

, if R0 �= 1,

[
βt + 1

I0

]−1

, if R0 = 1,

(1.3)

[7]. Hence if R0 ≤ 1, I(t) → 0 as t → ∞ whereas if R0 > 1, I(t) → N(1 − 1
R0

) as t → ∞.

Hethcote and Yorke [8] outline a series of mathematical models for gonorrhea. One of the simplest ones uses the above SIS

model with births and deaths included to model the spread of gonorrhea in a homogeneous homosexual population. This is

suitable as a very simple approximation to reality as it assumes that all individuals are the same whereas in reality there is a

great deal of heterogeneity in sexual behaviour and rates of sexual contact. The latter issue is discussed by Lajmanovich and

Yorke [9] and Nold [10] who introduce heterogeneity into this simple SIS epidemic model for gonorrhea.

Another situation where SIS models can be used is for pneumococcus amongst young schoolchildren. Pneumococcus is a

bacterial disease which does not cause permanent immunity hence SIS models are appropriate although there are several strains

or serotypes. Lipsitch [11] models vaccination against pneumococcus and his work is based on an SIS model. In a series of three

papers Greenhalgh et al. [12,13] and Lamb et al. [14] study SIS mathematical epidemic models for pneumococcus transmission

where transmission depends on serotype and genetic multilocus sequence type (which is genetic material within the serotype),

and the Ph.D. theses of Lamb [15] and Weir [16] are based on SIS models for pneumococcus.

Another disease which can be modelled by using the SIS model is the common cold [1–3]. The common cold (rhinovirus) is a

viral infectious disease of the upper respiratory tract which has symptoms such as sneezing and sore throat [17]. Rhinovirus is the

predominant cause of common cold, it is responsible for around 30–50% of colds each year [17] with over 100 known serotypes,

thus making it impossible to produce a unifying vaccine [17,18]. Most importantly, exposure to one rhinovirus does not confer

significant immunity against other serotypes [19]. Consequently, there have been papers that suggest that an SIS model would

be suitable in analysing the behaviour of the common cold (e.g. [1–3]).

While most commonly studied epidemic models are deterministic, real life must take account of random effects to account

for phenomena such as diseases dying out by chance. One way to do this is outlined by Bailey [20]. The simplest deterministic

epidemic model assumes that the population size is constant so that when an infected individual dies he or she is replaced by

another susceptible individual. If we make the same assumption in a stochastic model then if

pi(t) = P(There are exactly i infected individuals at time t)

assuming that all events in the stochastic model occur according to a Markov process with rate the same as the corresponding

rate in the deterministic model we can derive the differential equations satisfied by the probabilities pi(t) as

dp0

dt
= (μ + γ )p1(t), (1.4)

dpi

dt
= β(i − 1)(N − i + 1)pi−1 − βi(N − i)pi + (μ + γ )(i + 1)pi+1 − (μ + γ )ipi,

1 ≤ i ≤ N − 1, (1.5)

dpN

dt
= β(N − 1)pN−1 − (μ + γ )NpN, (1.6)

[20]. We could then numerically solve these equations, however this is difficult if the number of equations involved is large.

Allen [21] and Allen [22] outline an alternative approach, namely to consider possible changes �i in a small time interval �t

and then find the mean change E((�i)2) for the time interval �t and define

μ(t, i) = E(�i)

�t
, V (t, i) = E(�i)2

�t
and B(t, i) =

√
V (t, i).
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Then an SDE is inferred for this process by similarities in the forward Kolmogorov equations between the discrete and con-

tinuous stochastic processes [22]

dI = (βI(N − I) − (μ + γ )I)dt +
√

βI(N − I) + (μ + γ )I dW. (1.7)

We have changed Allen’s β to βN for consistency of notation. McCormack and Allen [23] construct an SDE approximation

similar to an SIS multihost epidemic model and explore the deterministic and stochastic models numerically. We shall explore

the solution to this SDE in a separate paper.

However this is a direct analogue of the SIS epidemic model in that it retains the (unrealistic) assumption that population size

remains constant and that infected individuals who die are immediately replaced by susceptible individuals. A more realistic (but

more complicated) stochastic analogue of the deterministic SIS epidemic model can be obtained by following a similar procedure

but assuming that births and deaths of individuals are independent. This is what we shall study in this paper.

Note that this implies that whereas in the deterministic model the population size remains constant, in the stochastic model

the population size may vary. Most deterministic models for infectious diseases assume that the population size remains constant

but there has been some work done on epidemic models with variable population size. This is usually for a different reason,

because either there is disease-related mortality so infected individuals die at an increased rate compared to susceptible ones or

there is some sort of population density dependence in either the birth rate or the death rate, due for example to competition

for scarce resources.

There has been much work already done on the stochastic aspects of the SIS epidemic model. For example, Norden [24]

described the stochastic SIS model as a logistic population model and investigated the distribution of the extinction times both

numerically and theoretically, while Cavender [25] treated the SIS model as a birth and death process. Kryscio and Lefévre [26]

extended and combined the results mentioned in [24] and [25], by working with the stochastic SIS logistic model. There are

many more papers that deal with the stochastic SIS model obtaining useful results (e.g. [27–33]).

Most of the classical work on epidemiological models has assumed that the population size remains constant (e.g. [6,20,34]).

Such an assumption is appropriate if the disease spreads rapidly in a short period of time and that disease-related deaths are

insignificant in terms of their effect on the whole population [35].

In the past humans have experienced many diseases that have caused a dramatic impact on the size of populations resulting in

disease-related mortality. For example, in the fourteenth century, the Black Death wiped out about 25% of the whole population

of Europe, killing 25 million people [20]. In 1520 smallpox killed half of the Aztec population. These diseases were in the past

but even now some countries are under constant threat from diseases with a high mortality rate such as malaria and HIV/AIDS

for which the assumption of a constant population size is not appropriate [36,37]. As a result it would no longer be reasonable

to consider the population size as a constant. Another example of a mathematical model in which the population size is not a

constant is given by Derrick and van den Driessche [38].

Quite a bit of previous work has been done on SIS epidemic models with varying population sizes. For example in Hethcote and

van den Driessche’s paper [39] they looked at an SIS epidemic model with varying population size and a time delay. The model

contained an exponential demographic structure, disease-related deaths and a delay corresponding to the infectious period.

Lahrouz and Settati [37] looked at the asymptotic properties of an SDE SIS epidemic model with standard incidence and variable

population size where white vector noise and telegraph noise modelled by Markovian switching are included. Busenberg et al.

[40] focused on analysing the SIS model of a vertically transmitted disease with varying population size. They also performed a

complete global stability analysis of their model. Apart from the SIS epidemic model with varying population size work has been

done on SIR and SIRS models.

Busenberg and van den Driessche [36] analysed global stability for an SIRS epidemic model with vital dynamics in a varying

size population. Li et al. [41] gave a detailed analysis of the global stability of a unique equilibrium for the fractions of susceptibles,

exposed, infected and removed and the global dynamics of an SEIR model with varying population size.

There are many ways in which stochasticity can be introduced into an epidemic model. Dalal et al. [42] introduced environ-

mental stochasticity into the disease transmission term in a model for AIDS and condom use with two distinct states. In a second

paper Dalal et al. [43] introduce stochasticity into a deterministic model of internal HIV viral dynamics via the same technique

of parameter perturbation into the death rate of healthy cells, infected cells and virus particles. Gray et al. [7] also study the SIS

epidemic model with environmental stochasticity introduced into the disease transmission parameter. Another way to intro-

duce stochasticity into deterministic models is telegraph noise where the parameters switch from one set to another according

to a Markov switching process [44]. However in this paper we focus on demographic stochasticity which is a different way of

approximating the differential equations which describe the spread of the disease.

We shall be looking at the two dimensional SDE SIS model system (S, I) with demographic stochasticity introduced into both

birth and death processes, replacing the unrealistic assumption that the population size remains constant. We model births and

deaths of individuals independently and it is no longer the case that an infected individual who dies is immediately replaced by

a susceptible individual and thus the population size will vary with respect to time. However the reader might argue that the

SIS epidemic model given by (1.1) and (1.2) with transmission term βS(t)I(t), corresponding to per capita disease contact rate

λ = βN, might not be realistic when analysing models where population size is allowed to change as the transmission rate β
may not remain constant especially when N is large. The transmission term βS(t)I(t) is more suitable for describing diseases in a

closely packed community such as school or a large city where doubling the population size could arguably double the number

of contacts [35,45]. However, there are many diseases such as gonorrhea and AIDS, where doubling the population size would

not realistically have a significant effect on the number of contacts, and thus β should vary with respect to the population size
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(e.g. [8]). As a result, it is reasonable to assume that the per capita disease contact rate λ depends on the population size N

[35,45,46]. Inspired by this, we obtain the following alternative SIS epidemic model with transmission term λ(N)
N S(t)I(t):

dS

dt
= μN − λ(N)

N
S(t)I(t) + γ I(t) − μS(t), (1.8)

dI

dt
= λ(N)

N
S(t)I(t) − (μ + γ )I(t). (1.9)

There are various choices for λ(N), for example Anderson and May [47] assume that λ(N) is linearly proportional to N for small

population size while Busenberg and van den Driessche [36] assume that λ(N) does not depend on N. One important conclusion

that Anderson [48] obtained is that the dependence of λ(N) on N decreases for sufficiently large N(t), which further highlights

the fact that the previous SIS epidemic model with transmission term βS(t)I(t) might not be realistic if N(t) continues to increase

in size with respect to time. The assumption we make for λ(N) in this paper aims to take into consideration both of the extreme

population sizes and we will show that the SIS epidemic model (1.1) and (1.2) could be derived from (1.8) and (1.9) for when N(t)

is sufficiently small.

To the best of our knowledge there has not been any work done previously on the resulting two dimensional SDE system.

Consequently in this paper we hope to fill the gap by providing a thorough analysis of the behaviour of this model. The one

dimensional SDE SIS epidemic model retaining the assumption that the population size remains constant has been discussed

above (1.7).

The paper is organised as follows: In Section 2 we will discuss the formulation of our two dimensional SDE SIS epidemic

model and the assumptions we imposed on the contact rate λ(N). In Section 3, we will focus on analysing the behaviour of

the SDE model for the total population size N(t) = S(t) + I(t). The existence and uniqueness of a non-negative non-explosive

solution is also shown. In Section 4 we shall look at the existence of a unique non-negative solution (S(t, ω), I(t, ω)) to the two

dimensional SDE SIS epidemic model. In Section 5 we examine the conditions for our solution to the two dimensional SDE SIS

model to go extinct in finite time. Lastly numerical simulations with theoretical parameter values and realistic parameter values

for pneumococcus and the common cold are given in Sections 6 and 7 respectively.

2. Demographic stochasticity for the two dimensional SDE SIS epidemic model

Throughout this paper, we let (�, F , {Ft}t≥0, P) be a complete probability space with filtration {Ft}t≥0 satisfying the usual

conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets). Let us consider the deterministic SIS model

(1.8) and (1.9) where λ(N) has the following properties:

(i) λ(N) is a continuous function of N ≥ 0 and continuously differentiable in N > 0,

(ii) λ(N) is a monotone increasing function of N,

(iii) λ(N) > 0 if N(t) > 0.

Let us also define λ(0) = limN→0 λ(N), where it is biologically reasonable to assume that it represents a small population.

We follow the model of Allen [21] outlined above. For this model, since the births and deaths are introduced independently

we have five possible interactions that could occur in the overall population. These changes and their probabilities to the first

order in �t are given in Table 1 with x = (S, I), x(0) = (S(0), I(0))T .

We use the notation

μ = E(�x)

�t
=

⎡
⎣−λ(N)SI

N
+ (μ + γ )I

λ(N)SI

N
− (μ + γ )I

⎤
⎦,

V = E[(�x)(�x)T ]

�t
=

[
a b
b c

]
,

B = V
1
2 = 1

d

[
a + w b

b c + w

]
,

where a = λ(N)SI
N + (μ + γ )I + 2μS, b = − λ(N)SI

N − γ I, c = λ(N)SI
N + (μ + γ )I, w =

√
ac − b2 and d = √

a + c + 2w. Then follow-

ing Allen [21] and Allen [22], the SDE SIS model with demographic stochasticity for the dynamics of two interacting populations

takes the form

dS(t) =
[
−λ(N)SI

N
+ (μ + γ )I

]
dt + a + w

d
dW1 + b

d
dW2, (2.1)

dI(t) =
[
λ(N)SI

N
− (μ + γ )I

]
dt + b

d
dW1 + c + w

d
dW2, (2.2)
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Table 1

Possible changes in x = (S, I) and their probabilities.

Change Probability

�x(1) [−1 0]T μS�t

�x(2) [0 −1]T μI�t

�x(3) [1 0]T μ(S + I)�t

�x(4) [1 −1]T γ I�t

�x(5) [ −1 1]T λ(N)SI
N

�t
where W (t) = (W1,W2)T is a two-dimensional Brownian motion. Let us integrate (2.1) to get

S(t) =
∫ t

0

[
−λ(N)S(s)I(s)

N(s)
+ (μ + γ )I(s)

]
ds +

∫ t

0

a(s) + w(s)

d(s)
dW1(s) +

∫ t

0

b(s)

d(s)
dW2(s). (2.3)

Now we define

M(t) =
∫ t

0

a(s) + w(s)

d(s)
dW1(s) +

∫ t

0

b(s)

d(s)
dW2(s). (2.4)

This is a martingale with respect to the filtration [49]. Hence its quadratic variation is given by

〈M(t)〉 =
∫ t

0

(a(s) + w(s))2

d(s)2
ds +

∫ t

0

b(s)2

d(s)2
ds,

=
∫ t

0

(
λ(N)S(s)I(s)

N(s)
+ (μ + γ )I(s) + 2μS(s)

)
ds. (2.5)

By the Martingale Representation Theorem in terms of Brownian motion, Eq. (2.5) could be written as an Itô integral (e.g. [49]).

Hence ∃ a Brownian motion W3 such that

M(t) =
∫ t

0

√
λ(N)S(s)I(s)

N(s)
+ (μ + γ )I(s) + 2μS(s) dW3(s). (2.6)

As a result, Eq. (2.3) becomes

S(t) =
∫ t

0

[
−λ(N)S(s)I(s)

N(s)
+ (μ + γ )I(s)

]
ds +

∫ t

0

√
λ(N)S(s)I(s)

N(s)
+ (μ + γ )I(s) + 2μS(s) dW3(s), (2.7)

and thus, Eq. (2.1) could be written as

dS(t) =
[
−λ(N)SI

N
+ (μ + γ )I

]
dt +

√
λ(N)SI

N
+ (μ + γ )I + 2μS dW3. (2.8)

Similarly, the same procedure could be applied to Eq. (2.2) to get

dI(t) =
[
λ(N)SI

N
− (μ + γ )I

]
dt +

√
λ(N)SI

N
+ (μ + γ )I dW4, (2.9)

where W4 is also a Brownian motion.

By using (2.1) and (2.2) and the fact that S + I = N, we have constructed the following SDE model illustrating the behaviour

for N:

dN(t) = a + b + w

d
dW1 + b + c + w

d
dW2. (2.10)

Again, by using the same technique as we have done to obtain Eqs. (2.8) and (2.9), Eq. (2.10) could be simplified to get

dN(t) =
√

2μN(t) dW5 (2.11)

where W5 is also a Brownian motion. Note that we could have derived this equation directly using the method outlined above.

By letting u = loge(N) and applying Itô’s formula to (2.11) we get that N(t) satisfies the implicit equation

N(t) = N0exp

[∫ t

0

(
−μ

N

)
ds +

∫ t

0

√
2μ

N
dW

]
.

Eq. (2.11) is a very specialised case (with k = 0) of the mean-reverting square root process or Cox–Ingersoll–Ross model

[49,50]. This equation is meant to model instantaneous interest rates and has applications in financial markets. The equation can

be written as

dr = k(θ − r)dt + σ
√

r dW.
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The density function of r(s) at time s conditional on its value at time t is given by

f (r(s), s; r(t), t) = ce−u−v
( v

u

) q
2

Iq(2(uv)
1
2 ),

where c = 2k

σ 2(1 − e−k(s−t))
,

u = cr(t)e−k(s−t),

v = cr(s),

q = 2kθ

σ 2
− 1,

and Iq(.) is the modified Bessel function of the first kind of order q. This is the non-central chi-square distribution χ2[2cr(s); 2q +
2, 2u]. The non-centrality parameter is 2u proportional to the present interest rate.

The mean and variance of r(s), the interest rate at time s, are

E(r(s)|r(t)) = r(t)e−k(s−t) + θ (1 − e−k(s−t)),

Var(r(s)|r(t)) = r(t)
(
σ 2

k

)
(e−k(s−t) − e−2k(s−t)) + θ

(
σ 2

2k

)
(1 − e−k(s−t))2.

As k becomes small (relevant to our model) the conditional mean goes to r(t) and the variance to σ 2r(t)(s − t).

Hence the system of SDEs

dS(t) =
[
−λ(N)SI

N
+ (μ + γ )I

]
dt +

√
λ(N)SI

N
+ (μ + γ )I + 2μS dW3,

and dI(t) =
[
λ(N)SI

N
− (μ + γ )I

]
dt +

√
λ(N)SI

N
+ (μ + γ )I dW4,

describe how the number of susceptible and infected individuals change with time for N(t) > 0. However the same system can

be more simply described by the SDEs

dI(t) =
[
λ(N)

N
I(N − I) − (μ + γ )I

]
dt +

√
λ(N)

N
I(N − I) + (μ + γ )I dW4, (2.12)

and dN(t) =
√

2μN(t) dW5, (2.13)

where N(t) = S(t) + I(t) > 0. In the remainder of the paper we shall focus on showing existence, uniqueness, boundedness,

extinction and persistence of the system of Eqs. (2.12) and (2.13). In the next section we focus solely on the second of these

equations (2.13). Throughout this paper, unless stated otherwise, we shall assume that the unit of time is one day, and the

population sizes are measured in units of one million.

3. Existence of a unique nonnegative solution for the total number of individuals

Before we begin illustrating some of the important theorems for our two-dimensional SDE SIS model, it is important we

understand the behaviour of the solution for our SDE for N(t) (2.13). Let a ∧ n represent the minimum of {a, n} and a ∨ n represent

the maximum of {a, n}. For a < N0 < n define

τa = inf{t ≥ 0 : N(t) ≤ a},
τn = inf{t ≥ 0 : N(t) ≥ n},

where τ0 = lima↓0 τa, τ∞ = limn↑∞ τn and τ = τ0 ∧ τ∞.

Theorem 3.1. For any given initial value N(0) = N0, the probability that the SDE (2.13) has a unique and nonnegative solution N(t)

for all t ≥ 0 is one, i.e., N(t) ≥ 0 a.s. for all t ≥ 0 and that the solution is non explosive.

Proof. It is easy to see that our SDE (2.13) is a special case of the SDE considered in the “Mean reverting square root process”

mentioned by Mao [49] with parameters λ̄ = μ̄ = 0 and σ̄ =
√

2μ. Thus, it is easy to see that N(t) ≥ 0 for all t ≥ 0 a.s. Furthermore,

since σ̄ 2 > 2λ̄μ̄, we could conclude from [49] that sup0≤t<τ N(t) < ∞ a.s. where τ is defined as above. Our SDE (2.13) also

satisfies the localised version of Theorem 3.2 and condition (2.18) mentioned in Chapter IV of [51] which represent the uniqueness

theorem and the sufficient condition for non-explosion of solutions respectively. As a result, we have reached our desired result

that there exists a unique, nonnegative and non-explosive solution to the SDE (2.13). �

As a result, this completes our proof on the properties for the SDE (2.13), and that we have shown there exists a unique and

nonnegative solution N(t) for the SDE (2.13).
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4. Existence of a unique nonnegative solution for the two-dimensional SDE SIS model

In this section, we will focus on proving that there exists a unique and nonnegative solution for our two-dimensional SDE SIS

model (2.12) and (2.13). The existence, uniqueness and non-explosivity of a solution to the SDE (2.13) was discussed above. We

refer to Ikeda and Watanabe [51] as it is a classic work on this topic. The existence theorem mentioned in [51] (Theorem 2.2 in

Chapter IV) holds for a d-dimensional stochastic process, as a result the existence of a (possibly explosive) solution for our two-

dimensional SDE SIS model (2.12) and (2.13) (or (2.8) and (2.9)) follows directly. However, the uniqueness theorem mentioned

in [51] (Theorem 3.2, Chapter IV) cannot be applied directly to our model as (i) it applies only for a one-dimensional process

and (ii) the coefficients b(x) : R → R and σ (x) : R → R of the SDE mentioned in this theorem are purely deterministic functions

not time dependent stochastic functions. Consequently we will construct a localised version of the uniqueness proof mentioned

in [51] and show that it can be extended to a one-dimensional SDE where the coefficients b(x, t,ω) : R × R
+ × � → R and

σ (x, t,ω) : R × R
+ × � → R are time-dependent stochastic functions. For the purposes of the uniqueness theorem proof we

will consider the one-dimensional SDE SIS model (2.12) with N(t, ω) as a given stochastic function R × � → R (which is the

unique nonnegative non-explosive solution to (2.13)). We will then prove that the solution to the SDE SIS model (2.12) has a

unique solution, hence as S is given by N − I the solution for S is also unique.

Note that the derivation of the SDE SIS model (2.12) and (2.13) is valid only for I(t,ω) ∈ [0, N(t,ω)(1 + μ+γ
λ(N)

)], as otherwise

the term under the square root is negative. Furthermore, as N → 0, λ(N) → λ(0). As mentioned before, all biologically reasonable

disease contact rates increase at most linearly with the number of individuals when the population size is small (e.g. [47,48]).

In Section 2, we have also assumed that λ(N) is a continuously differentiable monotone increasing function of N. Therefore, if

λ(0) = 0, then it is also biologically reasonable to assume that λ′(0) > 0. We have the following two cases:

(i) Case A. If λ(0) > 0 then λ(N) = λ(0)+o(1) in a neighbourhood of N = 0, or

(ii) Case B. If λ(0) = 0 and λ′(0) > 0, then λ(N) = λ′(0)N+o(N) in a neighbourhood of N = 0.

Suppose that n is a given nonnegative integer with n > |N(0)|. We now extend the domain of (2.12) and (2.13) into the whole

domain by defining λn(x, t,ω), σn(x, t,ω) : R × R
+ × � → R by

λn(x, t,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < 0,

λ(N)x

N
(N(t ∧ τn,ω) − x) − (μ + γ )x, for 0 ≤ x ≤ N(t ∧ τn,ω)

(
1 + μ + γ

λ(N)

)
,

λn

(
N(t ∧ τn,ω)

(
1 + μ + γ

λ(N)

)
, t,ω

)
, for x > N(t ∧ τn,ω)

(
1 + μ + γ

λ(N)

)
,

(4.1)

and

σn(x, t,ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for x < 0,√
λ(N)x

N
(N(t ∧ τn,ω) − x) + (μ + γ )x, for 0 ≤ x ≤ N(t ∧ τn,ω)

(
1 + μ + γ

λ(N)

)
,

0, for x > N(t ∧ τn,ω)
(

1 + μ + γ

λ(N)

)
,

(4.2)

in Case A, or in Case B if N > 0. In Case A, if N = 0 and x ≥ 0 we interpret λn(x, t, ω) as zero, and if N = x = 0 we interpret σ n(x, t,

ω) as zero. It is easy to see from (4.1) and (4.2) that in Case A then as N → 0, then λn(x, t, ω) → 0 and σ n(x, t, ω) → 0, ∀x, t, ω. In

Case B then in the limit as N → 0, (4.1) and (4.2) become

λn(x, t,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < 0,

−λ′(0)x2 − (μ + γ )x, for 0 ≤ x ≤ μ + γ

λ′(0)
,

−2(μ + γ )2

λ′(0)
, for x >

μ + γ

λ′(0)
,

(4.3)

and

σn(x, t,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < 0,√
x{(μ + γ ) − λ′(0)x}, for 0 ≤ x ≤ μ + γ

λ′(0)
,

0, for x >
μ + γ

λ′(0)
.

(4.4)

Hence here we take (4.3) and (4.4) as the definitions of λn(x, t, ω) and σ n(x, t, ω) at N = 0. Note that Eqs. (4.3) and (4.4) also

represent the case with disease transmission term βSI as N → 0. Throughout the rest of the paper in Case B for N = 0 we interpret

N(1 + μ+γ
λ(N)

) as
μ+γ
λ′(0)

.

Also if m ≥ n, τm ≥ τ n and

λn(x, t,ω) = λm(x, t,ω) and σn(x, t,ω) = σm(x, t,ω)
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for t ≤ τ n. Moreover if we define functions λ(x, t, ω) and σ (x, t,ω) : R × R
+ × � → R by

λ(x, t,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < 0,

λ(N)x

N
(N(t,ω) − x) − (μ + γ )x, for 0 ≤ x ≤ N(t,ω)

(
1 + μ + γ

λ(N)

)
,

λ
(

N(t,ω)
(

1 + μ + γ

λ(N)

)
, t,ω

)
, for x > N(t,ω)

(
1 + μ + γ

λ(N)

)
,

(4.5)

and

σ (x, t,ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for x < 0,√
λ(N)x

N
(N(t,ω) − x) + (μ + γ )x, for 0 ≤ x ≤ N(t,ω)

(
1 + μ + γ

λ(N)

)
,

0, for x > N(t,ω)
(

1 + μ + γ

λ(N)

)
,

(4.6)

then λn(x, t,ω) = λ(x, t,ω) and σn(x, t,ω) = σ (x, t,ω), for t ≤ τ n.

The following is the localised version of the uniqueness theorem mentioned in [51]:

Theorem 4.1 (Localised version of Uniqueness Theorem). Suppose that x : R
+ × � → R. Consider the SDE

dx(t) = λn(x, t,ω)dt + σn(x, t,ω) dW (t), (4.7)

with given initial condition xn(0), for t ≤ τ n, and note that λn(x, t, ω) and σ n(x, t, ω) are bounded. Then there exists a unique strong

pathwise solution xn(t, ω) to the SDE (4.7) for t ≤ τ n if for each nonnegative integer M ≥ 1

(i) |λn(x, t,ω) − λn(y, t,ω)| ≤ κn,M(|x − y|), where κn,M : [0, M] → R is a strictly increasing and concave function on [0, M] such

that κn,M(0) = 0 and
∫ M

0+ κ−1
n,M

(u)du = ∞ for all x, y with |x| ∨ |y| ≤ M,∀t ∈ R
+,ω ∈ �,

(ii) |σn(x, t,ω) − σn(y, t,ω)| ≤ ρn,M(|x − y|), where ρn,M : [0, M] → R is a strictly increasing function on [0, M] such that

ρn,M(0) = 0 and
∫ M

0+ ρ−2
n,M

(u)du = ∞ for all x, y with |x| ∨ |y| ≤ M,∀t ∈ R
+,ω ∈ �.

Proof. This is a straightforward modification of the proof of Theorem 3.2 in Chapter IV of [51]. �

The next stage is to show that our SDE SIS model (2.12) satisfies the conditions mentioned in Theorem 4.1, in other words the

functions κn, M and ρn, M exist for each n, M.

Lemma 4.2. λn(x, t, ω) and σ n(x, t, ω) defined by (4.1) and (4.2) satisfy conditions (i) and (ii) of Theorem 4.1.

Proof.

(i) We shall show that there exists a constant Kn such that

| λn(x, t,ω) − λn(y, t,ω) |
| x − y | ≤ Kn

for |x|∨|y| ≤ M, where Kn is independent of ω, x, y and M. Note that the first partial derivative of (4.1) is given as

λn,x(x, t,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x < 0,

λ(N) − 2λ(N)x

N
− μ − γ , for 0 < x < N(t)

(
1 + μ + γ

λ(N)

)
,

0, for x > N(t)
(

1 + μ + γ

λ(N)

)
,

(4.8)

for N(t) > 0 and λn,x = 0 for ∀x, t, ω at N = 0 in Case A. For 0 < x(t,ω) < y(t,ω) < N(t ∧ τn,ω)(1 + μ+γ
λ(N)

), by the Mean

Value Theorem we have that for some ξ (t,ω) ∈ (x, y) ⊂ [0, N(t ∧ τn,ω)(1 + μ+γ
λ(N)

)]

| λn(x, t,ω) − λn(y, t,ω) |
| x(t,ω) − y(t,ω) | = |λn,x(ξ , t,ω)|.

Moreover, since λ(N) is a monotone increasing function, we have that

| λn,x(ξ , t,ω) | ≤ sup
N∈[0,n]

max(| λ(N) − (μ + γ ) |, | λ(N) + 3(μ + γ ) |),
≤ max(| λ(0) − μ − γ |, | λ(n) − μ − γ |, | λ(n) + 3(μ + γ ) |),
= Kn.

Letting x → 0+, y → (N(t ∧ τn,ω)(1 + μ+γ
λ(N)

))−, we deduce that the same result is true if x, y ∈ [0, N(t ∧ τn,ω)(1 + μ+γ
λ(N)

)].

It is easy to see that the result follows for (x, y) ∈ R
2 in Case A. By applying a similar method, we can show that the

condition is also satisfied for Case B. Therefore, condition (i) is satisfied for all N(t∧τ n) ≥ 0 in both cases with κn,M(u) = Knu

for some constant Kn for all x, y with |x| ∨ |y| ≤ M,∀t ∈ R
+,ω ∈ �.
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(ii) In order to prove the second condition, we only need to consider the case where x, y ∈ [0, N(t ∧ τn,ω)(1 + μ+γ
λ(N)

)], as the

rest will follow. Therefore, if there exists a constant Ln independent of ω, x, y and M such that

|σn(x, t,ω) − σn(y, t,ω)|√|x(t,ω) − y(t,ω)| ≤ Ln, (4.9)

for x(t,ω), y(t,ω) ∈ [0, N(t ∧ τn,ω)(1 + μ+γ
λ(N)

)], then the proof is complete. By choosing

ε = 1
4 N(t ∧ τn,ω)(1 + μ+γ

λ(N)
) we then consider separately the regions

(a) ε ≤ x, y ≤ N(t ∧ τn,ω)(1 + μ+γ
λ(N)

) − ε,

(b) 0 < x, y ≤ ε,

(c) N(t ∧ τn,ω)(1 + μ+γ
λ(N)

) − ε ≤ x, y ≤ N(t ∧ τn,ω)(1 + μ+γ
λ(N)

),

(d) N(t ∧ τn,ω)(1 + μ+γ
λ(N)

) − ε < x ≤ N(t ∧ τn,ω)(1 + μ+γ
λ(N)

), 0 < y < ε, and

(e) 0 < x < ε, N(t ∧ τn,ω)(1 + μ+γ
λ(N)

) − ε < y ≤ N(t ∧ τn,ω)(1 + μ+γ
λ(N)

),

it is straightforward to show that (4.9) holds ∀N ≥ 0 in both cases. For (a) similarly to above we find an upper bound for the

derivative of σ n(t, x, ω) in [ε, N(t ∧ τn)(1 + μ+γ
λ(N)

) − ε]. Case B where N = 0 needs a separate argument but follows the same

basic idea. For (b) we multiply the top and bottom of (4.9) by |σn(t, x,ω) + σn(t, y,ω)| and proceed to find the upper bound Ln

that way. (c) follows from (b) by making the transformation

ξ = N

(
1 + μ + γ

λ(N)

)
− x, η = N

(
1 + μ + γ

λ(N)

)
− y.

For (d) and (e) we note that in these ranges |σn(x, t,ω) − σn(t, y,ω)| is bounded above, and
√|x(t,ω) − y(t,ω)| is bounded

below by a strictly positive lower bound, and the ratio of these depends only on n. As a result, condition (ii) is satisfied with

ρn,M(u) = Ln
√

u for some constant Ln independent of ω, x, y and M for all x, y with |x|∨|y| ≤ M, ∀t ∈ R
+,ω ∈ �. This completes

the proof of Lemma 4.2. �

We wish to extend the localised uniqueness Theorem 4.1 to show that there exists a unique strong pathwise non-explosive

solution to the SDE

dx(t) = λ(x, t,ω)dt + σ (x, t,ω) dW4

with given initial condition x(0). However before we can do this we need to show non-explosivity of the solution to (2.12). We

cannot use Theorem 2.4 in Chapter IV of [51] directly to do this as the solution does not satisfy condition (2.18) there. However

the result is still true in our case.

For any strictly nonnegative integer p > |I(0)| define the stopping time for I(t)

υp = inf{t ≥ 0 :| I(t) |≥ p}. (4.10)

Our next step is to show that given N(t,ω) : t ∈ R
+,ω ∈ �, the solution of the localised version of Eq. (2.12) is nonnegative

and bounded. We can then deduce non-explosivity of the SDEs (2.12) and (2.13) as a corollary.

Theorem 4.3. For any given initial value I(0) = I0 ∈ (0, N(0)) and any nonnegative integer p > |I(0)|,
0 ≤ I(t ∧ υp) ≤ N(t ∧ υp)

(
1 + μ + γ

λ(N)

)
, a.s. (4.11)

for all t ≥ 0.

Note that the result (4.11) differs from what one might expect on biological considerations, namely I(t ∧ υp) ∈ (0, N(t ∧ υp)).

However, this is caused by the method we adopted using the idea illustrated in [21] to introduce stochasticity into our two-

dimensional process (I, N) given by (2.12) and (2.13). This is a well-established technique for developing an SDE approximation

to an infinite system of differential equations. The resulting SDE system is much easier to handle than the original version so it

is important to study the properties of the solution to the SDE approximation. We performed several simulations with realistic

parameter values (discussed later in the paper) and although it is theoretically possible for I(t) to exceed N(t), in practice this was

not observed for realistic parameter values. Furthermore, the result (4.11) in Case B applies to the important special case where

the disease transmission term is βS(t)I(t).

Proof. Note that as we are dealing with the localised version for any fixed nonnegative integers n and p by Theorem 4.1, Eq. (2.12)

has a unique non-explosive solution in [0, T ∧ τn ∧ υp]. The proof for Theorem 4.3 is established based on a similar mechanism

as the “Square root process” mentioned in [49]. In order to clarify the proof, we will recall this mechanism. Let a0 = 1 and

ak = e−k(k+1)/2 for every integer k ≥ 1, where

∫ ak−1

a

du

u
= k.
k
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Let �k(u) be a continuous function such that its support is contained in the interval (ak, ak−1) where

0 ≤ �k(u) ≤ 2

ku
,

and �k(ak−1) = �k(ak) = 0

∫ ak−1

ak

�k(u)du = 1.

It can be shown that such a function exists. Define ϕk(x) = 0 for x ≥ 0 and

ϕk(x) =
∫ −x

0

dy

∫ y

0

�k(u)du, for x < 0. (4.12)

It is easy to see that ϕk ∈ C2(R, R). As in [49]

−1 ≤ ϕ′
k(x) ≤ 0 if − ∞ < x < −ak or otherwise ϕ′

k(x) = 0; (4.13)

|ϕ′′
k (x)| ≤ 2

k|x| if − ak−1 < x < −ak or otherwise ϕ′′
k (x) = 0; (4.14)

and x− − ak−1 ≤ ϕk(x) ≤ x− for all x ∈ R, (4.15)

where we define x− = −x if x < 0 or otherwise x− = 0. Now that we have set up this framework, we can proceed to show the

bounds for I(t ∧ υp) given by (4.11). We shall first show that the left hand side of expression (4.11) in Theorem 4.3 holds. By using

Itô’s formula, we obtain that for any t > 0

ϕk(I(t ∧ τn ∧ υp)) = ϕk(I0) +
∫ t∧τn∧υp

0

[
λn(I(s), s,ω)ϕ′

k(I(s,ω)) + σn(I(s), s,ω)2

2
ϕ′′

k (I(s,ω))

]
ds

+
∫ t∧τn∧υp

0

σn(I(s), s,ω)ϕ′
k(I(s,ω)) dW (s). (4.16)

Now from results (4.13) and (4.14), we know that for I(t ∧ τn ∧ υp) ≥ 0, ϕ′
k
(I(t ∧ τn ∧ υp)) = 0 and ϕ′′

k
(I(t ∧ τn ∧ υp)) = 0,

thus for all N ≥ 0 in both cases, (4.16) yields

ϕk(I(t ∧ τn ∧ υp)) ≤
∫ t∧τn∧υp

0

σn(I(s), s,ω)ϕ′
k(I(s,ω)) dW (s). (4.17)

Then by taking the expectations of both sides, we have that

Eϕk(I(t ∧ τn ∧ υp)) ≤ 0. (4.18)

Thus,

EI−(t ∧ τn ∧ υp) − ak−1 ≤ Eϕk(I(t ∧ τn ∧ υp)) ≤ 0. (4.19)

As k → ∞, we get that

EI−(t ∧ τn ∧ υp) ≤ 0. (4.20)

Noting that I−(t ∧ τn ∧ υp) ≥ 0, we have that EI−(t ∧ τn ∧ υp) ≥ 0,

EI−(t ∧ τn ∧ υp) = 0. (4.21)

By using proof by contradiction and Eq. (4.21), it is easy to see that for all t ≥ 0

P(I(t ∧ τn ∧ υp) < 0) = 0

which implies that P(I(t ∧ τn ∧ υp) ≥ 0) = 1. As a result, I(t ∧ τn ∧ υp) ≥ 0 a.s. But we have shown in Theorem 3.1 that τ n → ∞
as n → ∞ a.s. Hence the left hand side of (4.11) holds for all t where N(t ∧ υp) ≥ 0.

By using the same framework and a similar technique as we did previously, we will now complete the boundedness proof by

proving that I(t ∧ τn ∧ υp) ≤ N(t ∧ τn ∧ υp)(1 + μ+γ
λ(N)

) a.s. Let us define

J(I(t ∧ τn ∧ υp)) = N(t ∧ τn ∧ υp)
(

1 + μ + γ

λ(N)

)
− I(t ∧ τn ∧ υp). (4.22)

Then, from Itô’s formula on Eq. (4.22), we get

dJ(I(t ∧ τn ∧ υp)) = (−1)λ(J(I(t ∧ τn ∧ υp)))dt − σ (J(I(t ∧ τn ∧ υp))) dW.
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Here

λ(J(I(t ∧ τn ∧ υp)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2(μ + γ )
[

N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)]
, for J(t ∧ τn ∧ υp) < 0,[

N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
− J(I(t ∧ τn ∧ υp))

](
λ(N)J(I(t ∧ τn ∧ υp))

N
− 2(μ + γ )

)
,

for 0 ≤ J(t ∧ τn ∧ υp) ≤ N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

0, for J(t ∧ τn ∧ υp) > N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

and

σ (J(I(t ∧ τn ∧ υp))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for J(t ∧ τn ∧ υp) < 0,√
λ(N)J(I(t ∧ τn ∧ υp))

N

[
N(t ∧ τn ∧ υp,ω)

(
1 + μ + γ

λ(N)

)
− J(I(t ∧ τn ∧ υp))

]
,

for 0 ≤ J(t ∧ τn ∧ υp) ≤ N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

0, for J(t ∧ τn ∧ υp) > N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
.

By Itô’s formula, we derive that

ϕk(J(t ∧ τn ∧ υp)) = ϕk(J0) +
∫ t∧τn∧υp

0
[P(J(s)) + Q(J(s))]ds −

∫ t∧τn∧υp

0

σ (J(s), s,ω)ϕ′
k(J(s)) dW (s), (4.23)

where P, Q : R × R
+ × � → R are defined by

P(x, t,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(μ + γ )N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
ϕ′

k
(x),

for x < 0,

N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)
− x

)(
2(μ + γ ) − λ(N)x

N

)
ϕ′

k
(x),

for 0 ≤ x ≤ N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

0, for x > N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

(4.24)

Q(x, t,ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x

2

)[
λ(N)

N
(N(t ∧ τn ∧ υp,ω) − x) + (μ + γ )

]
ϕ′′

k
(x),

for 0 ≤ x ≤ N(t ∧ τn ∧ υp,ω)
(

1 + μ + γ

λ(N)

)
,

0, otherwise.

(4.25)

So P(x, t, ω) ≤ 0 and Q(x, t,ω) = 0 for all x.

Thus

ϕk(J(t ∧ τn ∧ υp)) ≤ −
∫ t∧τn∧υp

0

σ (J(s), s,ω)ϕ′
k(J(s)) dW (s).

Now take the expectations to get Eϕk(J(t ∧ τn ∧ υp)) ≤ 0. Hence, EJ−(t ∧ τn ∧ υp) − ak−1 ≤ Eϕk(J(t ∧ τn ∧ υp)) ≤ 0. As k →
∞, ak−1 → 0, thus EJ−(t ∧ τn ∧ υp) ≤ 0. Similarly to the argument we used for proving the left hand side of Eq. (4.11), it is clear

that for all t > 0,

P(J(t ∧ τn ∧ υp) < 0) = 0,

which implies that P(J(t ∧ τn ∧ υp) ≥ 0) = 1. In other words, I(t ∧ τn ∧ υp) ≤ N(t ∧ τn ∧ υp)(1 + μ+γ
λ(N)

) a.s. Once again, since τ n

→ ∞ as n → ∞, I(t ∧ υp) ≤ N(t ∧ υp)(1 + μ+γ
λ(N)

) a.s. �

Theorem 4.4. limp→∞ υp = ∞.

Proof. Clearly υp is increasing in p. Define υ∞ = limp→∞ υp (possibly infinite).
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If P(υ∞ < ∞) > 0 then as (υ∞ < ∞) = ∪T≥0 (υ∞ ≤ T ) ∃T < ∞ with P(υ∞ < T ) = δ > 0. Hence ∃ an integer p0 such that for

p ≥ p0, P(υp < T ) ≥ δ/2 > 0. So

E(I(T ∧ υp)
2) ≥ δp2

2
→ ∞ as p → ∞.

However now consider the one dimensional SDE (2.13) for N(t). By the proof of Theorem 2.4 in Chapter IV of [51],

MT = sup
t∈[0,T ]

E(N(t)2) < ∞.

Hence for t ∈ [0, T]

E|N(t)| ≤
[
E|N(t)|2

] 1
2 ≤

[
sup

t∈[0,T ]

E(N(t)2)

] 1
2

= M1T < ∞.

For any nonnegative integer p ≥ |I(0)| and t ∈ [0, T], we have that

(i) In Case A

E[I(t ∧ υp)
2] ≤ E[N(t ∧ υp)

2]

(
1 + μ + γ

λ(0)

)2

≤ MT

(
1 + μ + γ

λ(0)

)2

= M2T < ∞, (4.26)

or

(ii) In Case B by considering the regions N ∈ [0, 1] and N ∈ [1, ∞) separately it is straightforward to show that there is a constant

K such that I ≤ K(1 + N). Hence

E(I(t ∧ υp)
2) ≤ K2(1 + 2E|N(t ∧ υp)| + EN(t ∧ υp)

2) < K2(1 + 2M1T + MT ) = M3T < ∞. (4.27)

In both cases, this is a contradiction hence P(υ∞ < ∞) = 0, i.e. υ∞ = ∞ a.s. This completes the proof of Theorem 4.4. �

Corollary 4.5. The solution (I(t), N(t)) to the SDE system (2.12) and (2.13) is non-explosive.

Proof. This is straightforward. Given T > 0 we already know that

MT = sup
t∈[0,T ]

E(N(t)2) < ∞.

Letting p → ∞ in (4.26) and (4.27) we deduce that

sup
t∈[0,T ]

E(I(t)2) ≤ max(M2T , M3T ) < ∞.

Hence if x(t) = (I(t), N(t)).

sup
t∈[0,T ]

E[x(t)x(t)T ] < ∞

as required. �

Corollary 4.6. 0 ≤ I(t) ≤ N(t)(1 + μ+γ
λ(N)

) a.s.

Proof. This is straightforward letting p → ∞ in Theorem 4.3. �

Corollary 4.7. There exists a unique strong pathwise solution to the SDEs (2.12) and (2.13) for all t.

Proof. Suppose that there are two distinct solutions x1(t,ω) = (N1(t,ω), I1(t,ω)), x2(t,ω) = (N2(t,ω), I2(t,ω)) to (2.12) and

(2.13) with the same initial conditions, then they must differ on a set �1 where P(�1) > 0. Hence they must differ for t ∈ [0, T],

where T < ∞, on a set �2 where P(�2) > 0. However τ n → ∞ as n → ∞ and υp → ∞ as p → ∞ so for some strictly nonnegative

integers n and p the solutions x1(t ∧ τn ∧ υp,ω) and x2(t ∧ τn ∧ υp,ω) must differ on a set �3 with P(�3) > 0. This contradicts

Theorem 4.1. Hence the solution is unique. �

So we have shown that there is a unique pathwise strong non-explosive solution to the SDEs (2.12) and (2.13). The same result

is true for the system (S, I, N) given by S = N − I, (2.12) and (2.13). In the next section we shall look at extinction of our SDE

system.

5. Extinction of the number of infecteds and the total number of individuals

For the rest of this paper we shall focus on analysing the behaviour for the two dimensional SDE SIS model (2.12) and (2.13).

When looking at an epidemic model, one of the key aspects that we would like to look at is the extinction condition on our SDE

SIS model. Therefore, throughout this section we shall investigate this key aspect and show that the solution for N(t) to our SDE

model (2.13) does become extinct a.s. and then deduce that I(t) becomes extinct a.s.
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Corollary 5.1. For any given initial value of N0 = N(0), there exists some t > 0 such that N(t) will reach 0 with probability one in finite

time. In other words, P(τ0 < ∞) = 1.

Proof. Recall that the SDE model (2.13) is a special case of the mean-reverting square root process with zero drift coefficient and

thus from [49]

P

(
sup

0≤s<τ
N(s) < ∞

)
= 1.

We shall show that P(τ0 < ∞) = 1 by contradiction. Let us assume that the opposite is true i.e. P(τ0 = ∞) = δ > 0. For given

t, lima↓0 P(τa ≥ t) = P(τ0 ≥ t) ≥ δ. So by choosing a, with 0 < a < N(0), small enough P(�1) ≥ 2δ
3 > 0 where �1 = {ω : τa ≥ t}.

Now ∃M such that P(�2) ≥ 1 − δ
3 where

�2 =
{
ω : sup

0≤s≤τ
N(s) ≤ M

}

so P(�1 ∩ �2) ≥ δ
3 > 0.

Then we apply Itô’s formula choosing V = √
N for N > 0. We have that

√
N(t ∧ τa,ω) =

√
N(0) +

∫ t∧τa

0

q(N(s,ω))ds +
∫ t∧τa

0

√
2μ

2
dW (s), (5.1)

where q(x,ω) = − μ
4
√

x
≤ − μ

4
√

M
= −ε for M ≥ x. Here ε = μ

4
√

M
> 0. Hence

E(
√

N(t ∧ τa,ω)) ≤
√

N(0) +
∫ t∧τa

0

E(q(N(s,ω))ds,≤
√

N(0) +
∫ t∧τa

0

E(I�1∩�2
q(N(s,ω)))ds,≤

√
N(0) − εδt

3
.

Letting t → ∞ we deduce a contradiction. Thus we must have P(τ0 < ∞) = 1, so ∃t0 < ∞ such that N(t0) = 0 a.s. �

Theorem 5.2. For any given initial value I(0) = I0 ∈ (0, N), the solution to our two-dimensional SDE SIS model (2.12) and (2.13), I(t),

will reach zero with probability one in finite time and thus the disease will die out a.s.

Proof. ∃t0 < ∞ such that N(t0) = 0 a.s. From Corollary 4.6, we have that in Case A, and in Case B if N > 0

0 ≤ I(t) ≤ N(t)
(

1 + μ + γ

λ(N)

)
.

In Case A at t = t0, I(t0) = 0 a.s.

In order to complete the proof, let us now consider Case B. Let us define the stopping time

υb = inf{t ≥ τ0 : I(t) ≤ b},
where we set inf ∅ = ∞. The aim of our proof is to show that P(υ0 < ∞) = 1, where υ0 = limb↓0 υb and this can be shown by

proof by contradiction. Let us assume the opposite is true, i.e. P(υ0 = ∞) = δ̄ > 0. As τ 0 < ∞ a.s. we can choose T such that

P(τ0 ≤ T ) ≥ 1 − δ̄
3 . For t ≥ T, limb↓0 P(υb ≥ t) = P(υ0 ≥ t) ≥ δ̄. So by choosing b > 0 small enough P(υb ≥ t) ≥ 2δ̄

3 > 0. Hence

δ̄1 = P(υb ≥ t and τ0 ≤ T ) >
δ̄

3
.

By using Itô’s formula and choosing V (I) =
√

I, we have that for N(t) ≥ 0,

√
I(t ∧ υb) =

√
I(t ∧ τ0) +

∫ t∧υb

t∧τ0

U(I(s), s,ω)ds + 1

2

∫ t∧υb

t∧τ0

√
λ(N)

N
(N − I) + μ + γ dW (s), (5.2)

where U : R × R
+ × � → R is defined by

U(x, t,ω) =
√

x

2

(
λ(N)

N
(N − x) − μ − γ

)
− 1

8
√

x

(
λ(N)

N
(N − x) + μ + γ

)
. (5.3)

Here λ(N)
N is interpreted as λ′(0) as N = 0. Taking expectations of (5.2) we deduce that

0 ≤ E

(√
I(t ∧ υb)

)
≤ E

(√
I(t ∧ τ0)

)
+ E

∫ t∧υb

t∧τ0

U(I, s,ω)ds. (5.4)

For s ∈ [t ∧ τ0, t ∧ υb],
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U(x, s,ω) =
√

x

2
(−λ′(0)x − μ − γ ) − 1

8
√

x
(−λ′(0)x + μ + γ ),

≤ −λ′(0)

2
x

3
2 − (μ + γ )

√
x

2
, by letting p → ∞ in (4.11) with N = 0.

≤ −λ′(0)

2
b

3
2 , if x ≥ b.

Hence there exists an ε1 > 0 such that U(x, s,ω) ≤ −ε1 when x ≥ b. From (5.4) we deduce that for t ≥ T,

0 ≤ E

(√
I(t ∧ τ0)

)
− δ̄1ε1(t − T ),

so δ̄1ε1(t − T ) ≤ E

(√
I(t ∧ τ0)

)
. (5.5)

But by the Fatou–Lebesgue Theorem

lim sup
t→∞

E

(√
I(t ∧ τ0)

)
≤ E

(
lim sup

t→∞

√
I(t ∧ τ0)

)
,

=
√

μ + γ

λ′(0)
< ∞.

This contradicts (5.5) hence we have P(υ0 = ∞) = 0 and this completes the proof of Theorem 5.2. �

So in the two dimensional SIS model both N(t) and I(t) (hence also S(t)) die out a.s. in finite time.

In the next section we will be using the Milstein numerical simulation method to produce analytical results to reinforce the

results we have shown in Section 5.

6. Simulations to illustrate the analytical results

In the previous sections, we managed to prove several theorems for our two-dimensional SDE SIS model (2.12) and (2.13). In

this section, we will focus on applying the Milstein method (e.g. [52]) to produce simulations using R to support the results that

we have shown. In our paper, we have decided to use the Milstein method instead of the simpler Euler–Maruyama method which

is commonly used in many papers, for example [7]. The reason is that the Milstein method is strongly convergent with order 1

as the integration time-step goes to zero, which is better than the Euler–Maruyama method which only has a convergence order

of 0.5 [53].

We shall apply our results to the case where λ(N) = βN corresponding to Case B and disease transmission term βSI as in the

classical epidemic model. We simulate this model

dI(t) = [βI(t)(N(t) − I(t)) − (μ + γ )I]dt +
√

βI(N − I) + (μ + γ )I dW6, (6.1)

and dN(t) =
√

2μN(t) dW7, (6.2)

where again W6 and W7 are Brownian motions and illustrate the result given by Corollary 5.1, namely there exists some t > 0

such that N(t) = 0 a.s. Then we will integrate the two-dimensional system for (I(t), N(t)) given by (6.1) and (6.2). Simulations

are produced to support the results shown in Theorem 5.2 that the disease will die out in finite time. Our numerical simulation

program was comprehensively verified using detailed output from a large number of runs and also in both cases the simulations

were repeated using different parameter values and in each case the analytical results were verified.

6.1. Simulations on the total number of individuals

In this section, we will use simulation produced by the Milstein method to show the results given in Corollary 5.1.

Example 6.1. Suppose that the population size is measured in units of one million. By choosing μ = 25, the SDE model for N(t)

(6.2) becomes

dN(t) =
√

50N(t) dW (t). (6.3)

By Corollary 5.1, we could conclude that there exists t > 0 such that N(t) = 0 a.s.

Clearly, Fig. 1 supports the result illustrated in Corollary 5.1 and that the solution N(t) to the SDE model for N (2.13) does in

fact die out in finite time. In addition, Fig. 1 also supports the results shown in Theorem 3.1 by showing that the solution N(t) will

not explode in finite time. The simulation was repeated many times with different values of μ and similar results were obtained

each time to support the results shown in Corollary 5.1 and Theorem 3.1.
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Fig. 1. Computer simulation of the path N(t) for the SDE model (6.3) using the Milstein method with step size � = 0.001 with initial value N(0) = 100.
6.2. Simulations on the total number of infecteds

In this section we will use the combined integration program for the system (I(t), N(t)) given by the system of differential Eqs.

(6.1) and (6.2) to support the results given in Theorem 5.2.

Example 6.2 (R0 < 1). Again suppose that the population size is measured in units of one million. Let us choose the following

parameter values:

N1 = 80,μ = 15, γ = 35, β = 0.5, (6.4)

where N1 is the N value we choose for our deterministic SIS model given by (1.1) and (1.2) with R0 = 0.8. By substituting the

parameter values (6.4) into the SDE SIS model (6.1) and (6.2) we have that

dI(t) = [0.5I(t)(N(t) − I(t)) − 50I(t)]dt +
√

0.5I(t)(N(t) − I(t)) + 50I(t) dW4(t),

and

dN(t) =
√

30 dW5(t), (6.5)

with the corresponding SIS deterministic model as

dS(t)

dt
= 1200 − 0.5S(t)I(t) + 35I(t) − 15S(t),

and

dI(t)

dt
= [−50 + 0.5S(t)]I(t). (6.6)

Based on the result shown in Theorem 5.2, we would expect to see the solution I(t) to the SDE SIS model (6.1) and (6.2) die

out in finite time a.s. From both figures illustrated in Fig. 2, we can see that the numerical simulations support the result given

in Theorem 5.2 by illustrating that the solution I(t) dies out in finite time. Similarly, the numerical simulations were repeated

many times with different parameter values where R0 ≤ 1 and the same conclusion is obtained verifying the results obtained in

Corollary 5.1 and Theorem 5.2 for our two-dimensional SDE SIS model (6.1) and (6.2).

Next we would like to verify that the result illustrated in Theorem 5.2 also holds for the case where R0 > 1.

Example 6.3 (R0 > 1). Suppose that the population size is measured in units of one million. Let us now choose the following

parameter values:

N1 = 100,μ = 10, γ = 25, β = 0.5, (6.7)

where N1 is the N value we choose for our deterministic SIS model given by (1.1) and (1.2) where now R0 = 1.43. Similar to

Example 6.2, by substituting the parameter values (6.7) into the SDE SIS model (6.1) and (6.2) we have that

dI(t) = [0.5I(t)(N(t) − I(t)) − 35I(t)]dt +
√

0.5I(t)(N(t) − I(t)) + 35I(t) dW4(t),
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Fig. 2. Computer simulation of the path I(t) for the SDE SIS model (6.5) and the solution I(t) for the corresponding deterministic SIS model (6.6), using the

Milstein method with step size � = 0.0001 with initial values I(0) = 70 (the left hand side) and I(0) = 1 (the right hand side) both with N(0) = 80.
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Fig. 3. Computer simulation of the path I(t) for the SDE SIS model (6.8) and the solution I(t) for the corresponding deterministic SIS model (6.9), using the

Milstein method with step size � = 0.001 with initial values I(0) = 90 (the left hand side) and I(0) = 1 (the right hand side) both with N(0) = 100.
and

dN(t) =
√

20 dW5(t), (6.8)

with the corresponding SIS deterministic model as

dS(t)

dt
= 1000 − 0.5S(t)I(t) + 25I(t) − 10S(t),

and

dI(t)

dt
= [−35 + 0.5S(t)]I(t). (6.9)

For the case where R0 > 1, we could see from Fig. 3 that the simulations produced once again support our results mentioned in

Theorem 5.2, namely the solution I(t) to (6.1) and (6.2) dies out in finite time. Similar to Example 6.2, the numerical simulations

were carried out numerous times with different parameter values where R0 > 1, and the same conclusion is drawn to support

the results obtained in Corollary 5.1 and Theorem 5.2 for (6.1) and (6.2).
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Fig. 4. Computer simulation of the path N(t) for the SDE model (6.2) for pneumococcus, using the Milstein method with parameter value μ = 1.37363 × 10−3/day

with step size � = 0.05 with initial values N(0) = 150, 000.
7. Realistic simulations

In Section 6 we have been focusing on using theoretical parameter values to show that the solution (I, N) to (6.1) and (6.2)

shown in Corollary 5.1 and Theorem 5.2 are supported by our numerical simulation produced using the Milstein method. As

mentioned before the SIS model is suitable for modelling diseases such as the common cold, and pneumococcus where infected

individuals, once recovered, will not obtain immunity to the disease. In this section we will focus on producing numerical simu-

lations using realistic parameter values for the common cold, and pneumococcus amongst children aged two years and under in

Scotland. A similar situation but examining the spread of Streptococcus pneumoniae with transmission due to genetic sequence

type (part of the genetic material) is discussed by Greenhalgh et al. [12] and we have taken some of their parameter values to use

in our simulations. Throughout this section, the unit of time is still one day but the population sizes are not scaled as previously.

Example 7.1 (Pneumococcus model). The population of Scottish children under two years old is of approximate size 150,000.

The per capita death rate is therefore μ = 1
104 /wk = 9.615 × 10−3/wk = 1.37363 × 10−3/day [12]. For the per capita rate γ at

which infected individuals become immune we note that in her Ph.D. thesis Weir [16] deduces from a systematic review that γ
= 0.02011/day, (1/γ ) = 49.7 days. The basic reproduction number for pneumococcus is estimated to be 1.49 [54], 1.4 [55] and

1.8–2.2 [56] so we take β = 2.857 × 10−7/day corresponding to a basic reproduction number of 2.0.

Based on the result shown in Corollary 5.1, we would expect the solution N(t) to die out in finite time. Our simulations do not

contradict this but it appears that the time taken to die out with realistic parameter values is very large. The numerical simulation

produced for the solution of N(t) is illustrated in Fig. 4.

From Theorem 5.2, we would also expect the solution I(t) to Eqs. (6.1) and (6.2) to die out in finite time a.s. The simulations for

I(t) are shown in Fig. 5. We observe that after an initial transient stage, the stochastic simulations appear to oscillate about the

deterministic endemic equilibrium level which acts as a quasi-equilibrium [57], This does not contradict our theoretical result,

we expect that the disease dies out eventually after a long but finite time [57]. Note that on the timescale shown, the total

population size is still large. The numerical simulations were repeated with different starting values and similar results were

obtained each time.

Next we shall look at the simulations for the common cold.

Example 7.2 (Common cold model). Heikkinen and Järvinen [17], mentioned that the mean duration of the common cold is

around 7–10 days. For our simulation, we choose the mean duration of the common cold to be 8 days and thus γ = 0.125/day.

Sun et al. [58], calculated the estimated basic reproduction number of the common cold, R0, in a dormitory to be between 0.7–1.6

depending on the number of people in each dormitory. For our simulations, we shall demonstrate two cases: (i) where R0 < 1,

so we choose R0 to be 0.7 which corresponds to 3 people per dormitory and (ii) where R0 > 1, so we choose R0 = 1.6 which

corresponds to 6 people per dormitory. According to statistics of WHO [59] the crude death rate per year per 1000 population in

the UK was 8.9 in 2012, hence μ = 0.000024384/day. By using the above parameter values and the definition for R0, we derived

β for both cases: (i) β = 0.02917/day where N = 3 to correspond to R0 = 0.7 and (ii) β = 0.03334/day where N = 6 to correspond

to R = 1.6.
0
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Fig. 5. Computer simulation of the path I(t, ω) for the SDE SIS model with N(t) as a random variable for pneumococcus, using the Milstein method with parameter

values β = 2.857 × 10−7/day, γ = 0.02011/day and μ = 1.37363 × 10−3/day with step size � = 0.01 with initial values I(0) = 100, 000 (the left hand side) and

I(0) = 5, 000 (the right hand side) both with N(0) = 150, 000 and N1 = 150, 000, where N1 is the N value for the deterministic model.

Fig. 6. Computer simulation of the path N(t) for the SDE model (6.2) for the common cold, using the Milstein method with parameter value μ =
0.000024384/day with step size � = 0.1 with initial value N(0) = 10.
The numerical simulation on the solution N(t) to the SDE model (6.2) with the realistic parameter values for the common cold

is shown in Fig. 6. Based on the results in Corollary 5.1 we would expect the solution N(t) to die out in finite time. However, from

Fig. 6, it appears that the computational time required in order for it to happen might be too large, but we could see that the

simulation is approaching zero as time increases. The simulations were repeated various times with different initial values and

the same conclusion is drawn.

We will now show the simulations for the solution I(t, ω) to the SDE SIS model (6.1) for the two cases where R0 = 0.7 and

R0 = 1.6.

From Theorem 5.2 we would expect the solution to the SDE SIS model (6.1), I(t, ω) with N(t) as a random variable to become

extinct in finite time a.s. This is clearly the case illustrated in Fig. 7 and Fig. 8 for the case where R0 < 1 and R0 > 1 respectively.

Hence our simulations for the common cold have verified our results shown in Theorem 5.2. Again, numerical simulations were

repeated with different initial values and the same conclusion is obtained for both cases. Note that we have also carried out
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Fig. 7. Computer simulation of the path I(t, ω) for the SDE SIS model with N(t) as a random variable for the common cold, using the Milstein method where R0

< 1 with parameter values β = 0.02917/day, γ = 0.125/day and μ = 0.000024384/day with step size � = 0.05 with initial values I(0) = 5, N(0) = 15, N1 = 3,

where N1 is the N value for the deterministic model.
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Fig. 8. Computer simulation of the path I(t, ω) for the SDE SIS model with N(t) as a random variable for the common cold, using the Milstein method where R0

> 1 with parameter values β = 0.03334/day, γ = 0.125/day and μ = 0.000024384/day with step size � = 0.08 with initial values I(0) = 5, N(0) = 15, N1 = 6,

where N1 is the N value for the deterministic model.
simulations with larger population size such as N(t) = 100 and the simulations obtained do not contradict with our theorems

but again the time taken to die out with realistic parameter values is very large.

Recall from Theorem 4.3, although theoretically, I(t) might exceed N(t), we could see from our realistic simulations produced

based on realistic parameter values that we never practically encounter the situation where I(t) does exceed N(t), even though it

is theoretically possible.

From the simulations created using theoretical and realistic parameter values, we could see that the results obtained for the

SDE SIS model (2.12) and (2.13) do indeed apply to the SDE SIS model (6.1) and (6.2) with transmission term βS(t)I(t).
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8. Conclusion and discussion

Epidemiological models have become increasingly important in predicting and controlling the spread of infectious diseases.

The SIS epidemic model is one of the simplest models which is suitable in analysing diseases where individuals do not gain

immunity after recovery, for example gonorrhea, pneumococcus, tuberculosis or the common cold.

In this paper we have constructed the SDE SIS model with full demographic stochasticity with transmission term λ(N)S(t)I(t)
N(t)

.

The deterministic SDE SIS model assumes that the total population size is constant thus susceptible or infected individuals who

die are immediately replaced by new susceptible individuals. Allen [21] and Allen [22] discuss an SDE model which retains

this assumption and this is a direct analogue of the deterministic SIS epidemic model. However this assumption was made in

the deterministic model to maintain a tractable model structure. In the stochastic model it is not really necessary to retain this

assumption so in this paper we have assumed that births and deaths of infected individuals were completely independent, so that

the total number of individuals formed a stochastic birth and death process. We derived a pair of coupled SDEs which describe

how the number of susceptible and infected individuals vary with time. However it was more convenient to work with the SDEs

in terms of the total number of individuals and the total number of infected individuals. We showed that there was a unique non-

negative, non-explosive solution and obtained an upper bound for the number of infected individuals at time t in terms of the

total number of individuals. We then showed that both the total number of individuals and the number of infected individuals

will become extinct in finite time almost surely. We next demonstrated that that SDE SIS model with transmission term βS(t)I(t)

is a special case of our SDE SIS model. The analytical results were confirmed with numerical simulations. Finally examples of

pneumococcus and the common cold with real-life parameters were discussed, providing further numerical verification of our

analytical results.

SDEs are increasingly being used in a wide range of areas, for example finance and biology. There has recently been a large

explosion in the number of papers using SDEs to model how diseases spread (e.g. [7,60–62]). However these papers introduce

stochasticity in a different way by parameter perturbation which is appropriate if one of the parameters is a random variable.

In this paper the SDEs look similar but have a different explanation as they are an SDE approximation to the continuous time

Markov Chain models that have traditionally been used to introduce stochasticity into epidemic models ([20–22]). Although

similar models have been formulated, but not analysed, previously ([21,22]) our paper is one of the first to analyse such models.
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