Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Compression of X-ray Free Electron Laser pulses to attosecond duration

Sadler, James D. and Nathvani, Ricky and Oleśkiewicz, Piotr and Ceurvorst, Luke A. and Ratan, Naren and Kasim, Muhammad F. and Trines, Raoul M. G. M. and Bingham, Robert and Norreys, Peter A. (2015) Compression of X-ray Free Electron Laser pulses to attosecond duration. Scientific Reports, 5. ISSN 2045-2322

[img]
Preview
Text (Sadler-etal-SR2015-compression-of-X-ray-Free-Electron-Laser-pulses)
Sadler_etal_SR2015_compression_of_X_ray_Free_Electron_Laser_pulses.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (501kB)| Preview

    Abstract

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration.