Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Arrest of domain coarsening via antiperiodic regimes in delay systems

Javaloyes, J. and Ackemann, T. and Hurtado, A. (2015) Arrest of domain coarsening via antiperiodic regimes in delay systems. Physical Review Letters, 115 (20). ISSN 0031-9007

[img]
Preview
Text (Javaloyes-etal-PRL-2015-Arrest-of-domain-coarsening-via-antiperiodic-regimes)
Javaloyes_etal_PRL_2015_Arrest_of_domain_coarsening_via_antiperiodic_regimes.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Motionless domain walls representing connecting temporal or spatial orbits typically exist only for very specific parameters, around the so-called Maxwell point. This report introduces a novel mechanism for stabilizing temporal domain walls away from this peculiar equilibrium, opening up new possibilities to encode information in dynamical systems. It is based on antiperiodic regimes in a delayed system close to a bistable situation, leading to a cancellation of the average drift velocity. The results are demonstrated in a normal form model and experimentally in a laser with optical injection and delayed feedback.