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Abstract. Circulant preconditioning for symmetric Toeplitz linear systems is well-established;
theoretical guarantees of fast convergence for the conjugate gradient method are descriptive of the
convergence seen in computations. This has led to robust and highly efficient solvers based on use
of the fast Fourier transform exactly as originally envisaged in Gil Strang’s ‘Proposal for Toeplitz
Matrix Calculations’ (Studies in Applied Mathematics, 74, pp. 171–176, 1986.). For nonsymmetric
systems, the lack of generally descriptive convergence theory for most iterative methods of Krylov
type has provided a barrier to such a comprehensive guarantee, though several methods have been
proposed and some analysis of performance with the normal equations is available.

In this paper, by the simple device of reordering, we rigorously establish a circulant precondi-
tioned short recurrence Krylov subspace iterative method of minimum residual type for nonsymmetric
(and possibly highly nonnormal) Toeplitz systems. Convergence estimates similar to those in the
symmetric case are established.
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1. Introduction. Krylov subspace methods are well suited to linear systems

(1.1) Anxn = bn

involving large nonsingular Toeplitz matrices An ∈ Rn×n, since matrix vector prod-
ucts can be cheaply performed via a circulant embedding and the fast Fourier trans-
form [55, Section 4.2.4]. Additionally, preconditioned Krylov subspace methods can be
more robust than tailored direct methods and have better complexity [8, Section 1.1].
Circulant preconditioners Cn ∈ Rn×n for An are attractive, since these can also be ap-
plied efficiently using the fast Fourier transform. However, theoretical guarantees of ef-
fectiveness of these preconditioners have mostly been restricted to symmetric (or Her-
mitian) positive definite Toeplitz matrices [4, 8, 11, 12, 14, 15, 32, 35, 38, 40, 49, 52].
This is largely due to the fact that when Cn and An are symmetric positive definite
matrices, the preconditioned conjugate gradient method (CG) [29] can be applied
with its favourable properties: namely, minimization of the error in the An-norm,
short-term recurrences and convergence bounds that depend only on the eigenvalues
of the preconditioned matrix. These eigenvalues can be analysed in many cases, so
that convergence within a certain number of iterations of CG can be guaranteed.

If An is symmetric but indefinite we can apply preconditioned MINRES [42]
as long as the preconditioner is positive definite. MINRES has similar properties
to CG, namely minimization of the preconditioned residual, short-term recurrences
and convergence bounds in terms of the eigenvalues of the preconditioned matrix.
However, the spectrum of the preconditioned matrix may be more difficult to analyse
than in case of positive definite An [9, 39].

Often considered hardest to solve by preconditioned iterative methods are sys-
tems with nonsymmetric (nonnormal) matrices. It may be more challenging to obtain
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a suitable preconditioner, although effective preconditioners for certain nonsymmetric
Toeplitz matrices have been proposed [13, 33, 36, 41]. However, in general Krylov sub-
space methods for nonnormal matrices, such as GMRES [47], QMR [24], SQMR [25]
(which requires less work than the original QMR method when applied to Toeplitz
matrices) and BiCG-STAB [54], do not simultaneously minimize a relevant quantity
and have short-term recurrences for general matrices [22]. Additionally, the conver-
gence of these methods cannot be bounded using only the eigenvalues (or singular
values). This is in stark contrast to methods for symmetric matrices. The excep-
tion is the application of CG to the normal equations (CGNE), or MINRES to an
augmented system. The former does not preserve the Toeplitz structure, although
An and ATn can still be cheaply applied, while decay properties of the Toeplitz ma-
trix may be lost in the augmented matrix. Additionally, CGNE and MINRES on an
augmented system may be more costly, may result in worse conditioning (and slower
convergence), and may be more difficult to precondition effectively.

In this note we show that nonsymmetry and nonnormality of Toeplitz matrices
pose no difficulty in terms of obtaining theoretical guarantees of convergence of a
minimum residual method with short-term recurrences, since a simple permutation
renders the Toeplitz matrix symmetric (but possibly indefinite). MINRES can, there-
fore, be applied to suitably preconditioned Toeplitz problems. The preconditioner is a
circulant matrix that is as cheap and easy to apply as other proposed preconditioners
for Toeplitz systems. Significantly, since the convergence of MINRES can be bounded
using only the eigenvalues of the preconditioned matrix, we can obtain descriptive
convergence bounds.

We restrict our attention to real Toeplitz matrices here. When applied to com-
plex Toeplitz matrices, our method produces complex symmetric matrices and the
associated linear system can be solved by SQMR [25] or by the recently proposed
CS-MINRES [17], a minimal residual method for complex symmetric matrices that
can be used with a complex symmetric preconditioner.

2. Preliminaries. Let An ∈ Rn×n be the nonsingular Toeplitz matrix

An =



a0 a−1 . . . a−n+2 a−n+1

a1 a0 a−1 a−n+2

... a1 a0
. . .

...

an−2
. . .

. . . a−1

an−1 an−2 . . . a1 a0


and Cn ∈ Rn×n be the nonsingular circulant preconditioner

Cn =



c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 . . . c1 c0

 .

If the Fourier matrix is denoted Fn = (fjk) with fjk = e−2(j−1)(k−1)πi/n, j, k =
1, . . . , n, then the circulant Cn has diagonalization

(2.1) Cn = U∗nΛnUn
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where Un = Fn/
√
n and Λ = diag(Fncn), with cn the first column of Cn. A conse-

quence of the relationship between Cn and the Fourier matrix is that a matrix-vector
product, or the solution of a linear system, with a circulant matrix of dimension n can
be performed in O(n log(n)) operations using the fast Fourier transform (FFT) [55,
Section 4.2.3]. Note that although Cn is real, Fn and Un are generally complex.

Superfast direct solvers with O(n log2(n)) complexity have been developed for
Toeplitz systems but these require that a certain submatrix ofAn of dimension bn/2c is
nonsingular. The algorithms can, therefore, break down if a principal submatrix of An
is ill-conditioned or singular, although look-ahead strategies have been proposed [14].
Iterative methods, in contrast, do not require that such a submatrix is nonsingular.
Moreover, since each matrix-vector multiply with An can be performed in O(n log(n))
time, if the number of iterations is small the complexity of iterative methods is better
than that of direct methods for solving Toeplitz systems. Typically, preconditioning
is required to keep the number of iterations small.

Let An have as its coefficients the Fourier coefficients of a function f that is
L2-integrable over [−π, π], i.e.,

ak =
1

2π

∫ π

−π
f(x)e−ikxdx,

k = 0,±1,±2, . . . with ak the entries of An above. Then f is the generating function
associated with An. If the real Toeplitz matrix An is associated with a real, non-
negative generating function that is not identically zero then it is symmetric positive
definite. In this case a number of circulant preconditioners, including the Strang [49]
and optimal [15] preconditioners, are such that for large enough n, C−1

n An is a pertur-
bation of the identity of the form R+E, where the rank of R is bounded independently
of n and E has small norm. Consequently, the eigenvalues of C−1

n An are clustered
near one with the exception of a fixed number of outliers and CG for the precondi-
tioned system is guaranteed to converge within a certain number of steps. Similar
results can be obtained for certain circulant preconditioners for MINRES, with the
eigenvalues clustered near 1 and -1 for large enough n [9, 39].

Circulant [13, 36, 41], ω-circulant [10] and banded Toeplitz [5, 33, 44] precondi-
tioners have been proposed for nonsymmetric An. For some of these preconditioners
Pn, the preconditioned matrix P−1

n An = In + R + E, where In is the identity ma-
trix, and again the rank of R is bounded independently of n and E has small norm.
However, as previously mentioned, this is insufficient to guarantee rapid convergence
of most Krylov solvers, including GMRES, QMR, SQMR and BiCGSTAB. Despite
the lack of rigorous convergence proofs, circulant preconditioners for non-Hermitian
and nonsymmetric Toeplitz matrices have been used successfully with methods like
GMRES [33, 41], which is perhaps favoured because it minimizes the preconditioned
residual.

3. MINRES for preconditioned Toeplitz matrices. We would like to solve
the Toeplitz system (1.1) by a minimal residual method with short-term recurrences
and descriptive convergence bounds. It turns out that this can be achieved without
any additional cost, since An is transformed to a symmetric (Hankel) matrix by
swapping its rows or, equivalently, by forming YnAn, where Yn ∈ Rn×n is the exchange
matrix

Yn =

 1

. .
.

1

 .



4 J. PESTANA and A. J. WATHEN

An equivalent statement is that An is self-adjoint with respect to the bilinear form
defined by Yn [26, 45]. The matrix Yn is symmetric and orthogonal, and is thus
involutory. Moreover, since Yn is orthogonal, both An and YnAn have the same
2-norm condition number.

The permutation YnAn converts a Toeplitz matrix that may be highly nonnormal
to a matrix that is not only normal but symmetric, so that the system

(3.1) YnAnx = Ynb

can be solved by MINRES. Within the MINRES algorithm, multiplications by Yn
are replaced by permutations. Convergence of MINRES for (3.1) depends on the
eigenvalues of YnAn and may be slow if these are not nicely distributed. However,
if an effective (invertible) circulant preconditioner Cn for An is known, the unitary
diagonalization of Cn allows us to easily replace Cn by its absolute value. Recall that
the absolute value of a general matrix B ∈ Rn×n is given by |B| = (BTB)

1
2 [30,

Chapter 8]. Since Cn is normal, we find that

(3.2) |Cn| = (CTnCn)
1
2 = (CnC

T
n )

1
2 = U∗n|Λn|Un,

where |Λn| is the diagonal matrix in (2.1) with all entries replaced by their magnitudes.
Additionally,

(3.3) |Cn|−1Yn = Yn|Cn|−1

because |Cn|−1 is also symmetric and circulant, hence certainly Toeplitz, and

(3.4) |Cn| = CnC̃n, C̃n = U∗nsgn(Λn)Un,

where sgn(Λn) = diag(λi/|λi|) and C̃n ∈ Rn×n is orthogonal and involutory. Since
|Cn| is a circulant, matrix-vector products, or linear solves, with |Cn| can also be
applied in O(n log(n)) operations, so that |Cn| is no more difficult to apply than Cn.
Note that if Cn is positive definite then Λ = |Λ|, i.e., the absolute value leaves Cn
unchanged.

Accordingly, the solution x of (1.1) can be found by applying preconditioned
MINRES, described in, for example, Elman, Silvester and Wathen [21, Chapter 6]
to (3.1) with preconditioner |Cn|. The preconditioned MINRES method produces
iterates {xk}, with residual rk = b−Anxk so that norm of the preconditioned residual

‖|Cn|−1Ynrk‖2 = ‖Yn|Cn|−1rk‖2 = ‖|Cn|−1rk‖2

is minimized. Since |Cn| has unitary eigenvectors, ‖|Cn|−1rk‖2 = ‖|Λn|−1vk‖2 with
vk = Unrk, so that ‖vk‖2 = ‖rk‖2. Relative preconditioned residuals are bounded as
follows:

‖|Cn|−1rk‖2
‖|Cn|−1r0‖2

≤ min
p∈Πk

p(0)=1

max
λ∈σ(|Cn|−1YnAn)

|p(λ)|,

where Πk is the set of polynomials of at most degree k and σ(|Cn|−1YnAn) is the spec-
trum of |Cn|−1YnAn. This shows that knowledge of the eigenvalues of |Cn|−1YnAn, or
of inclusion regions for these eigenvalues, is sufficient to guarantee that preconditioned
MINRES will converge to a given tolerance within a certain number of iterations. In
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particular, if the eigenvalues of |Cn|−1YnAn lie in two intervals [−a,−b] ∪ [c, d], of
equal length, so that d− c = a− b, then [21, pp. 306–307]

(3.5)
‖|Cn|−1r2k‖2
‖|Cn|−1r0‖2

≤ 2

(√
ad−

√
bc√

ad+
√
bc

)k
.

To this point we have used a row permutation to symmetrize An. However, we
could instead have applied a column permutation, since AnYn is also symmetric. In
general, AnYn 6= YnAn but both approaches give the same iterates and residuals as
the next lemma shows.

Lemma 1. When the same starting vector x0 ∈ Rn is used, the kth iterate xLk of
preconditioned MINRES applied to (3.1) with preconditioner |Cn| is equal to the kth
iterate xRk of preconditioned MINRES applied to

(AnYn)z = b, x = Ynz,

with preconditioner |Cn| for k = 1, 2, . . . , n.
Proof. If we solve YnAnx = Ynb by preconditioned MINRES, we effectively solve

(|Cn|−
1
2YnAn|Cn|−

1
2 )|Cn|

1
2x = |Cn|−

1
2Ynb

by MINRES. At the kth step MINRES selects an iterate xLk of the form

xLk = x0 + |Cn|−
1
2 pLk−1(|Cn|−

1
2YnAn|Cn|−

1
2 )|Cn|−

1
2Ynr0,

where pLk−1 is a polynomial of degree at most k − 1. Since |Cn| is real symmetric

and circulant, so is |Cn|−
1
2 , and it follows that Yn|Cn|−

1
2 = |Cn|−

1
2Yn. It is then

straightforward to show that

(3.6) xLk = x0 + Yn|Cn|−1pLk−1(AnYn|Cn|−1)r0.

The polynomial pLk−1 is selected so that the 2-norm of the preconditioned residual

|Cn|−
1
2Ynrk = qLk (|Cn|−

1
2YnAn|Cn|−

1
2 )|Cn|−

1
2Ynr0 = Yn|Cn|−

1
2 qLk (AnYn|Cn|−1)r0

is minimized, where qLk (z) = 1− zpLk−1(z). Thus, the residual polynomial is

(3.7) qLk = arg min
q∈Πk

q(0)=1

‖|Cn|−
1
2 q(AnYn|Cn|−1)r0‖2.

On the other hand, solving (AnYn)z = b, x = Ynz by preconditioned MINRES is
equivalent to solving

(|Cn|−
1
2AnYn|Cn|−

1
2 )|Cn|

1
2Ynx = |Cn|−

1
2 b.

The kth iterate xRk is of the form

xRk = x0 + Yn|Cn|−
1
2 pRk−1(|Cn|−

1
2AnYn|Cn|−

1
2 )|Cn|−

1
2 r0

or

(3.8) xRk = x0 + Yn|Cn|−1pRk−1(AnYn|Cn|−1)r0,
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where pRk−1 is also a polynomial of degree at most k − 1. The 2-norm of the precon-
ditioned residual

|Cn|−
1
2 rk = qRk (|Cn|−

1
2AnYn|Cn|−

1
2 )|Cn|−

1
2 r0 = |Cn|−

1
2 qRk (AnYn|Cn|−1)r0

is minimized by MINRES, with qRk (z) = 1− zpRk−1(z), and so

qRk = arg min
q∈Πk

q(0)=1

‖|Cn|−
1
2 q(AnYn|Cn|−1)r0‖2.

Comparison with (3.7) shows that qLk = qRk . From the definitions of qLk and qRk we see
that pLk−1 = pRk−1 and, from (3.6) and (3.8), that xLk = xRk at each iteration.

Let us contrast this proposed MINRES method with two alternatives, CG for the
normal equations and SQMR. When the eigenvalues of |Cn|−1YnAn are completely
symmetric about the origin, CGNE converges in half the number of iterations of
MINRES, but each CGNE iteration requires two matrix-vector products with An and
two solves with Cn, so that the work of the two methods is roughly the same [23].
When this exact symmetry does not apply MINRES converges faster, i.e. requires
fewer matrix-vector multiplies and preconditioner solves. Both methods minimize the
residual and use short-term recurrences. However, it may be more difficult to find
suitable preconditioners for the normal equations than it is to find preconditioners for
MINRES. This issue is not restricted to Toeplitz matrices, but more generally a good
preconditioner P for A does not imply that PPT is a good preconditioner for AAT .

Now consider SQMR, which uses Yn to reduce the work of QMR. Unlike MIN-
RES, SQMR can be used with an indefinite preconditioner but it does not min-
imize the residual or the error with respect to a standard norm and breakdown
may still occur. These properties make guarantees on convergence rates difficult,
if not impossible, to obtain. A similar analysis to that in the proof of Lemma 1
shows that SQMR applied to (YnCn)−1(YnAn)x = (YnCn)−1(Ynb) is equivalent to
SQMR applied to (CnYn)−1(AnYn)(Ynx) = (CnYn)−1b and that SQMR applied to
the system (CnYn)−1(YnAn)x = (CnYn)−1(Ynb) is equivalent to SQMR applied to
(YnCn)−1(AnYn)(Ynx) = (YnCn)−1b.

4. Using existing circulant preconditioners in MINRES. The previous
section showed that the proposed MINRES method can be used to solve systems (1.1)
with nonsymmetric Toeplitz coefficient matrices, provided we can find suitable positive
definite preconditioners |Cn| in (3.2). Here, we show that certain existing circulant
preconditioners can be used to build |Cn|.

As discussed in Section 2, for certain nonsymmetric Toeplitz matrices and cir-
culant preconditioners the preconditioned matrix C−1

n An = In + R + E, where In is
the n × n identity matrix, R ∈ Rn×n has low rank and E ∈ Rn×n has small norm.
Fortuitously, a similar relationship also holds for the transformed matrix |Cn|−1YnAn.

Proposition 2. Let

(4.1) C−1
n An = I +R+ E

where rank(R) = K and ‖E‖ ≤ ε, where ‖ · ‖ is a unitarily invariant norm. Then,

(4.2) |Cn|−1YnAn = Qn + R̂+ Ê,

where rank(R̂) = K and ‖Ê‖ = ‖E‖. Moreover, the eigenvalues of Qn are 1 or −1.
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Proof. If (4.1) holds then, using (3.3) and (3.4),

|Cn|−1YnAn = Yn|Cn|−1An = YnC̃nC
−1
n An = Qn + R̂+ Ê,

where Qn = YnC̃n, R̂ = QnR and Ê = QnE. Since C̃n is circulant, Qn is not only
orthogonal but symmetric and so has eigenvalues ±1, while the orthogonality of Qn
means that rank(R̂) = rank(R) = K and ‖Ê‖ = ‖E‖ with respect to any unitarily
invariant norm.

Remark 1. A similar relationship between Cn and |Cn| was proposed by Ng and
Potts for symmetric indefinite problems [39, Theorem 4.3].

Remark 2. An analogous result can be proved for right preconditioning.
Proposition 2 shows that if C−1

n An satisfies (4.1), the eigenvalues of |Cn|−1YnAn
are clustered near ±1 with a certain number of outliers. Additionally, the eigenvalues
of Yn|Cn|−1An = |Cn|−1YnAn are real. This clustering of eigenvalues, in conjunction
with the results of Campbell et al. [3] allow us to provide a more precise bound
than (3.5) in this case.

Proposition 3. Let |Cn|−1YnAn have p eigenvalues λ ∈ {z : |1− z| ≤ ε} and q
eigenvalues λ ∈ {z : |1 + z| ≤ ε} with the remaining d = n−p− q outlying eigenvalues
satisfying λ ∈ {z : |1 − z| > ε and | − 1 − z| > ε}. If we apply preconditioned MIN-
RES to (3.1) with preconditioner |Cn| then, after the dth iteration, the preconditioned
residuals satisfy

(4.3)
‖|Cn|−1rd+2k‖2
‖|Cn|−1r0‖2

≤ C(2ε+ ε2)k,

where C is independent of k but depends on ε and the distance from the outliers to
the clusters at 1 and −1.

Proof. Recognising that MINRES and GMRES are mathematically equivalent,
the result is obtained directly from Proposition 5.1 in Campbell et al. [3] with σ = 2+ε,
ρ = ε and P = 2 clusters.

Combining the results of Propositions 2 and 3 we see that if Cn is such that
C−1
n An = I + R + E where rank(R) = K and ‖E‖ ≤ ε, and ‖ · ‖ is a unitarily

invariant norm, we can expect convergence of our MINRES method in a number of
iterations that depends on K and on ε. Moreover, if K and ε are independent of the
dimension n of the problem then MINRES will converge in a number of iterations
that is independent of n.

Proposition 3 also leads to a 2-step superlinear convergence result that is a natural
extension of the results for circulant preconditioners for positive definite Toeplitz
matrices [8, page 431]. To achieve this superlinear convergence, as in the positive
definite case, we require the notion of a clustered spectrum. For this purpose, we
generalize the definition for positive definite matrices given in the survey paper by
Chan and Ng [8, Definition 1.1] to our problem.

Definition 4. A sequence of matrices {Zn}∞n=1 is said to have clustered spectrum
around 1 and -1 if for any ε > 0 there exist positive integers n1 and n2 such that for
all n > n1, at most n2 eigenvalues λ of Zn are such that |λ− 1| > ε and |λ+ 1| > ε.
Examining (4.3) in Proposition 3 we see that if C−1

n An has clustered spectra then we
can expect 2-step superlinear convergence (c.f. equation (1.8) in Chan and Ng [8]).

Although it seems more common in the literature to prove that (4.1) holds, there
are cases in which eigenvalue bounds are given for the normal equations coefficient
matrix (C−1

n An)T (C−1
n An). Proposition 5 below shows that any preconditioner that
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works well for the normal equations will also work well for MINRES provided the
condition number of Cn is not too large.

Proposition 5. Let the eigenvalues of (C−1
n An)T (C−1

n An) be contained in the in-
terval [1−ε, 1+ε] with the exception of K outliers. Then the eigenvalues of |Cn|−1YnAn
are contained in [√

κ(−1− ε), −1 + ε√
κ

]
∪
[

1− ε√
κ
,
√
κ(1 + ε)

]
,

where κ = κ2(Cn) is the 2-norm condition number of Cn, with the exception of K
outliers.

Proof. Since

(C−1
n An)T (C−1

n An) = (Yn|Cn|−1An)T (Yn|Cn|−1An) = (|Cn|−1YnAn)T (|Cn|−1YnAn),

the singular values of |Cn|−1YnAn are clustered in [1− ε, 1 + ε] with the exception of

K outliers. These singular values are related to those of |Cn|−
1
2YnAn|Cn|−

1
2 by the

bound [20, Theorem 3.1]

σi(|Cn|−1YnAn)√
κ2(|Cn|)

≤ σi(|Cn|−
1
2YnAn|Cn|−

1
2 ) ≤

√
κ2(|Cn|)σi(|Cn|−1YnAn),

where σi is the ith singular value. The matrix |Cn|−
1
2YnAn|Cn|−

1
2 is symmetric and

so its singular values are the absolute values of its eigenvalues. The condition number
of |Cn| is equal to that of Cn (see (3.2)), which gives the result.

Note that even when κ is large, the eigenvalues of |Cn|−1YnAn may be clustered.
As an example, consider the Toeplitz matrix of dimension 1000 generated by the
function f(x) = |x|eix, x ∈ [−π, π], and the Strang preconditioner. All but five
eigenvalues λ of (C−1

n An)T (C−1
n An) satisfy |1 − λ| ≤ 0.1, with the outliers equal to

5.5 × 10−8, 0.27, 0.63, 0.88 and 978. Since the Strang preconditioner has condition
number κ = 2.5×103 (see Table 6.6), we might expect the eigenvalues of |Cn|−1YnAn
to be spread along the real line. However, all but five eigenvalues λ of |Cn|−1AnYn
satisfy |1 − λ| ≤ 0.1 or |1 + λ| ≤ 0.1, with the outliers at −1.22, −0.70, −5 × 10−4,
1.3 and 5.3. Note also that these outliers do not vary as much in magnitude as the
outliers of (C−1

n An)T (C−1
n An), although they lie on both sides of the imaginary axis.

Clearly then, Proposition 5 may be pessimistic. Additionally, in our experiments
the performance of our MINRES method is typically better than that of LSQR (an
implementation of CGNE) even when Cn is ill-conditioned.

We now discuss a selection of preconditioners for nonsymmetric Toeplitz matrices
for which our MINRES method works well. Oseledets and Tyrtyshnikov [41] show
that (4.1) holds with ‖E‖ = 0 and K independent of n for a wide class of Toeplitz
matrices, namely matrices with generating function

f = P (z) +
Q(z)

L(z)
, z = eix,

where P , Q and L are polynomials, L has no roots on the unit circle, the degree of Q
is not greater than the degree of L, and L and Q have no common roots. For these
problems, Proposition 3 shows that MINRES terminates after at most K iterations
and, since Definition 4 holds, we can expect 2-step superlinear convergence. For
Toeplitz matrices with generating function

f = g +
∑̀
α=0

m∑
k=0

Aka(z − ψk)α log(z − ψk), z = eix, |ψk| = 1,
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where g is analytic in a disc containing |z| = 1, Proposition 2 holds for any ε > 0 with
K = log ε−1[c0 +c1 log ε−1 +c2 log n]+c3, where c0, c1, c2 and c3 are independent of n
and ε. Thus, for this class of Toeplitz matrix, which includes all examples in papers on
superlinear preconditioners, we can also expect 2-step superlinear convergence with
our MINRES method [41, 56]. Additionally, Oseledets and Tyrtyshnikov propose a
method for constructing circulant preconditioners that satisfy (4.1) using only the
elements of An, i.e., without reference to a generating function. GMRES is used to
solve their preconditioned systems, but MINRES could be applied to the transformed
systems instead.

For large enough dimension n, and for Toeplitz matrices with 2π-periodic, con-
tinuous, complex-valued generating function f having no zeros, the optimal precondi-
tioner proposed by Chan [15] satisfies (4.1) and has clustered spectrum [13, Corollary
1]. Thus, we can expect 2-step superlinear convergence. Additional properties of the
optimal preconditioner can by found in the paper by Chan, Jin and Yeung [7]. Tyr-
tyshnikov, Yeremin and Zamarashkin [53] consider improved circulants for Toeplitz
matrices with a 2π-Lebesque-integrable complex-valued generating function f that is
sparsely vanishing, i.e., for which∫ π

−π
φε(|f(x)|)dx = 0,

where φε is the characteristic function of the interval [0, ε]. For these improved circu-
lant preconditioners, the preconditioned Toeplitz matrix satisfies AnC

−1
n = I+E and

an analogous result to Proposition 2 holds. Additionally, ‖E‖F = o(n), where ‖ ·‖F is
the Frobenius norm, so that AnC

−1
n has a clustered spectrum and 2-step superlinear

convergence is achieved.
Let Cn be the Strang preconditioner and let the entries of An be such that

∞∑
k=−∞

|ak| ≤ β <∞,

∣∣∣∣∣∣
∞∑

k=infty

ake
−ikθ

∣∣∣∣∣∣ ≥ γ > 0,

for all θ and for constants α and β. Then (C−1
n An)T (C−1

n An) has all eigenvalues
clustered at 1 with the exception of a fixed number, independent of n. Thus, by
Proposition 5, the modified Strang preconditioner |Cn| also gives clustered eigenvalues
as long as |Cn| is well conditioned. Similar results were proved for a second circulant
preconditioner that utilizes all elements of An.

5. Extension to block matrices. Multilevel Toeplitz matrices are a natural
extension of Toeplitz matrices, with the simplest, separable matrices, formed from
Kronecker products of Toeplitz matrices. Separable matrices arise in, for example,
partial differential equations [16, 28], two-dimensional signal processing [6] and image
deblurring [18]. Preconditioners for Toeplitz matrices have been used in Kronecker
products to solve multilevel problems (see, e.g., [6, 18, 34]). Note, however, that
unlike in the previous section we cannot expect the number of outlying eigenvalues,
i.e., the eigenvalues not belonging to a cluster, to be independent of the dimension of
the matrix [48] since for multilevel Toeplitz problems only multigrid methods show
convergence rates independent of the dimension [1].

To get a feel for how the results of previous sections can be applied to separable
matrices, and the differences between the Toeplitz and multilevel Toeplitz cases, let
Bnm = Sn ⊗ Tm where Sn ∈ Rn×n and Tm ∈ Rm×m are Toeplitz matrices and
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⊗ represents a Kronecker product. (Pertinent properties of Kronecker products are
given in, for example, the book by Horn and Johnson [31, Section 4.2].) Then if
Wnm = Yn ⊗ Ym, the product

WnmBnm = (Yn ⊗ Ym)(Sn ⊗ Tm) = (YnSn)⊗ (YmTm).

Since the Kronecker product of symmetric matrices is symmetric, WnmBnm is sym-
metric. We can define a preconditioner Gnm = Jn ⊗Km for Bnm, where Jn ∈ Rn×n
is a circulant preconditioner for Sn and Km ∈ Rm×m is a circulant preconditioner for
Tm. Then, if |Jn| is the absolute value of Jn (defined analogously to |Cn|) and |Km| is
the absolute value of Km, we can define the symmetric positive definite preconditioner

|Gnm| = |Jn| ⊗ |Km|

for which

|Gnm|−1WnmBnm = |Jn|−1YnSn ⊗ |Km|−1YmTm.

The eigenvalues of |Gnm|−1WnmBnm are products of the eigenvalues of |Jn|−1YnSn
and |Km|−1YmTm. Specifically, if µ1, . . . , µn are the eigenvalues of |Jn|−1YnSn and
ν1, . . . , νm are the eigenvalues of |Km|−1YmTm then the eigenvalues λ1,1, . . . , λm,n of
|Gnm|−1WnmBnm are λi,j = µiνj , i = 1, . . . , n, j = 1, . . . ,m.

The fact that the spectrum of |Gnm|−1WnmBnm comprises all products µiνj is
an indicator that the eigenvalues of this preconditioned separable matrix may not be
as “nice” as those of a preconditioned Toeplitz matrix. This is substantiated by the
block version of Proposition 2 given below.

Proposition 6. Let Sn ∈ Rn×n and Tm ∈ Rm×m be nonsingular Toeplitz ma-
trices and let Jn ∈ Rn×n and Km ∈ Rm×m be circulants. Additionally, let

J−1
n Sn = I +R1 + E1 and K−1

m Tm = I +R2 + E2

where rank(R1) = K1, rank(R2) = K2, ‖E1‖ ≤ ε1 and ‖E2‖ ≤ ε2, where ‖ · ‖ is a
unitarily invariant norm. Then,

(5.1) G−1
nmBnm = I +R+ E + F,

where rank(R) ≤ K1 +K2 +K1K2, ‖E‖ ≤ ε1 + ε2 + ε1ε2 and F = R1⊗E2 +R2⊗E1.
Moreover,

(5.2) |Gnm|−1WnmBnm = Qmn + R̂+ Ê + F̂ ,

where Qmn is orthogonal with eigenvalues ±1, rank(R̂) = rank(R), ‖Ê‖ = ‖E‖ and

F̂ = QmnF .
Proof. Using standard properties of Kronecker products, we find that

G−1
nmBnm = (I +R1 + E1)⊗ (I +R2 + E2) = I +R+ E + F,

where R = R1 ⊗ I + I ⊗ R2 + R1 ⊗ R2, E = E1 ⊗ I + I ⊗ E2 + E1 ⊗ E2 and
F is as defined in the proposition. The subadditivity property of both the rank
and norm give that rank(R) ≤ rank(R1 ⊗ I) + rank(I ⊗ R2) + rank(R1 ⊗ R2) and
‖E‖ ≤ ‖E1⊗I‖+‖I⊗E2‖+‖E1⊗E2‖. For any two matrices X and Y , rank(X⊗Y ) =
rank(X) rank(Y ) and ‖X ⊗ Y ‖ = ‖X‖‖Y ‖ which proves the first part.
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Also, since |Jn| and |Km| are symmetric and Toeplitz, Yn|Jn|−1 = |Jn|−1Yn and
Ym|Km|−1 = |Km|−1Ym. It follows that

|Gnm|−1WnmBnm = (YnJ̃n ⊗ YmK̃m)(J−1
n Sn ⊗K−1

m Tm),

where J̃n and K̃m are defined analogously to C̃n in (3.4). The matrix Qmn = (YnJ̃n⊗
YmK̃m) is orthogonal and symmetric, so its eigenvalues are ±1. Thus (5.2) holds with

R̂ = QmnR, Ê = QmnE and F̂ = QmnF . The rank and norm of a matrix are not
affected by multiplication by a unitary matrix and so we have the second result.

We see from this result that the rank of R may be larger than that of R1 or R2

and ‖E‖ may be larger than ‖E1‖ or ‖E2‖. However, more problematic is the matrix
F which need not be low-rank or have small norm. This is not surprising in light of
the results of Serra Capizzano and Tyrtyshnikov [48]. Given these results we do not
consider block Toeplitz matrices further, although there may be examples for which
the approach described in this section is appropriate.

6. Numerical results. In this section we compare the proposed preconditioned
MINRES method, with preconditioner |Cn|, with other solvers for linear systems with
nonsymmetric Toeplitz matrices. Specifically, we apply right-preconditioned GMRES
and left-preconditioned LSQR [43] (which can be considered as a good implementa-
tion of CGNE) with preconditioner Cn to (1.1) and SQMR to (3.1) with (possibly
indefinite) preconditioner YnCn. Note that without preconditioning the SQMR and
MINRES methods are equivalent.

The Toeplitz matrices themselves have been chosen for their nonnormality. Our
first example is a Jordan block with eigenvalue 1.1 while our second is the Grcar
matrix

An =


1 1 1 1
−1 1 1 1 1

. . .
. . .

. . .
. . .

. . .

−1 1 1 1 1

 ,
which is well-conditioned but very nonnormal [51, Chapter 7]. The third is the tridi-
agonal Toeplitz matrix

An =


1 0.01
1 1 0.01

. . .
. . .

. . .

1 1 0.01
1 1

 ,

which was used by Liesen and Strakoš [37] as an example of a nonnormal tridiagonal
Toeplitz matrix. Our final example is the dense matrix defined by the generating
function f(x) = |x|eix, x ∈ [−π, π]. The condition numbers of these matrices are
given in Table 6.1.

In all cases, the right-hand side vector b is a random vector scaled to have unit
length. Our stopping criteria are that the relative residual satisfies ‖rk‖2/‖r0‖2 <
10−8 or that this residual reduction is not achieved in 1000 iterations. We denote
the latter condition by ‘—’. We use the Strang [49] and optimal [15] preconditioners
and additionally give numerical results also for so-called superoptimal precondition-
ing [52], although our theory does not (obviously) cover this last case. Note that
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Table 6.1
Condition numbers of unpreconditioned matrices.

n 10 100 1000
Jordan block 9.2 20.1 21.0

Grcar 2.9 3.6 3.6
Tridiagonal 14 207 2.6× 106

Dense 83 1.3× 103 1.8× 104

Table 6.2
Matrix-vector products for the Jordan block with eigenvalue 1.1.

n GMRES LSQR MINRES SQMR

Unpreconditioned
10 10 20 10 10

100 98 200 100 100
1000 183 372 368 368

Strang
10 3 6 4 2

100 3 6 4 2
1000 3 6 4 2

Optimal
10 9 14 10 8

100 8 18 13 8
1000 5 12 10 5

Superoptimal
10 10 18 10 9

100 12 30 22 12
1000 7 18 16 8

the superoptimal preconditioner can be expressed in terms of the optimal precondi-
tioner [7].

Tables 6.2–6.5 show the numbers of matrix-vector products for the different pre-
conditioners and iterative methods. (All methods require one matrix-vector product
per iteration except LSQR, which requires two.) We see that for each of these prob-
lems the preconditioners are effective for all methods tested. However, theoretical
bounds on convergence exist only for LSQR and MINRES, both of which minimize
the preconditioned residual. LSQR requires more matrix-vector products than the
proposed MINRES method for all problems and so it appears that the latter may be
preferable in practice. It is clear that GMRES converges faster than MINRES for
these examples; however, there are no theoretical guarantees of fast convergence and
it is well known that convergence is not necessarily governed by eigenvalues [2, 27].
Moreover, GMRES requires long recurrences, in contrast to the proposed MINRES
method, so that each iteration becomes more expensive. From Tables 6.4 and 6.5 we
see that the superoptimal preconditioner is not as effective as the optimal or Strang
preconditioners for the two ill-conditioned problems. This may be related to the lack
of satisfaction of our theory, but it is also known in the symmetric case that when
An is ill conditioned the superoptimal preconditioner may preserve small eigenvalues
that hamper convergence [19, 50] (c.f. the eigenvalue distribution for the example
presented after Proposition 5).

The condition numbers of the preconditioned matrices are given in Table 6.6. We
see that the condition number of |Cn|−1/2YnAn|Cn|−1/2 = |Cn|−1/2An|Cn|−1/2 is typi-
cally smaller than that of C−1

n An. Moreover, the conditioning of |Cn|−1/2An|Cn|−1/2

is relevant to the speed of convergence of the proposed MINRES method, whereas
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Table 6.3
Matrix-vector products for the Grcar matrix.

n GMRES LSQR MINRES SQMR

Unpreconditioned
10 10 20 10 10

100 79 64 60 60
1000 300 66 66 66

Strang
10 6 18 10 5

100 5 18 10 4
1000 5 18 10 4

Optimal
10 11 20 10 10

100 9 22 16 8
1000 7 20 14 6

Superoptimal
10 11 20 10 10

100 9 24 18 9
1000 7 20 14 7

Table 6.4
Matrix-vector products for the tridiagonal matrix.

n GMRES LSQR MINRES SQMR

Unpreconditioned
10 10 20 10 10

100 97 200 100 100
1000 985 — — —

Strang
10 4 12 6 3

100 4 12 6 3
1000 4 12 6 3

Optimal
10 9 14 9 9

100 10 20 13 11
1000 11 32 18 11

Superoptimal
10 10 20 10 10

100 18 48 29 17
1000 30 106 57 30

Table 6.5
Matrix-vector products for the dense matrix.

n GMRES LSQR MINRES SQMR

Unpreconditioned
10 — 20 10 10

100 — — — —
1000 923 — — —

Strang
10 8 20 9 7

100 11 26 16 9
1000 13 34 18 12

Optimal
10 10 20 10 10

100 12 28 17 11
1000 15 44 24 15

Superoptimal
10 10 20 10 10

100 19 54 31 19
1000 41 138 66 35
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Table 6.6
Condition numbers of the Strang (S), optimal (O) and superoptimal (SO) circulant precondi-

tioned matrices.

κ(Cn) κ(C−1
n An) κ(|Cn|−

1
2An|Cn|−

1
2 )

10 100 1000 10 100 1000 10 100 1000

Jordan
S 21 21 21 8.5 6.6 6.6 3.6 3.5 3.5
O 10 19 21 4.6 6.3 6.6 2.4 3.4 3.5
SO 3.1 10 19 4.0 5.1 6.3 3.6 3.2 3.4

Grcar
S 3.2 2.6 3.6 2.5 2.7 2.7 2.2 2.2 2.2
O 2.4 3.5 3.6 2.3 2.6 2.7 2.0 2.2 2.2
SO 2.2 3.4 3.6 2.3 2.6 2.7 2.0 2.1 2.2

Tridiagonal
S 201 201 201 104 187 1.3× 106 10 9.0 1.2× 105

O 21 2.0× 104 223 11 1.7× 104 1.4× 106 2.4 36 1.1× 105

SO 2.6 486 31 9.0 1.6× 104 6.3× 105 8.6 1.0× 104 2.5× 105

Dense
S 23 246 2.5× 103 96 3.7× 103 1.3× 105 28 584 1.1× 104

O 20 110 734 86 1.2× 103 5.3× 104 26 397 6.4× 103

SO 3.4 13 43 46 734 1.4× 104 39 335 4.1× 103

convergence of GMRES or SQMR cannot be directly related to the conditioning of
C−1
n An. Since the condition number of Cn is small for the Jordan block and the

Grcar matrix, Proposition 5 guarantees that the eigenvalues of |Cn|−1/2An|Cn|−1/2

of the Strang preconditioned matrix are clustered, similarly to the eigenvalues of
(C−1

n An)T (C−1
n An) for the normal equations. The same comparison cannot be made

in all cases for the tridiagonal or dense matrices, since Cn may be ill-conditioned, yet
we find that convergence is still better faster than that of LSQR for these problems,
as measured by the number of matrix-vector products needed to achieve the desired
residual norm reduction. Additionally, the eigenvalue results following Proposition 5
indicate that the eigenvalue bounds may not reflect the actual eigenvalue distribution.

7. Conclusions. We have shown that linear systems with nonnormal Toeplitz
coefficient matrices can be efficiently solved by a preconditioned MINRES method
by a simple reordering of rows or columns and the application of a suitable circulant
preconditioner. The resulting method minimizes the preconditioned residual in the
Euclidean norm, uses short-term recurrences and its rate of convergence is bounded in
terms of the eigenvalues of the preconditioned coefficient matrix. The preconditioner
itself is no more difficult to apply than existing circulant preconditioners for Toeplitz
matrices, and our theory shows that the preconditioned MINRES method typically
has fast convergence.

Our numerical results demonstrate that when modified Strang, optimal and su-
peroptimal preconditioners are used, the preconditioned MINRES method converges
rapidly. Although convergence can be achieved with fewer matrix-vector products
when GMRES and SQMR are applied, each of these methods has its drawbacks: GM-
RES requires long recurrences while SQMR does not minimize the residual. Moreover,
for neither method do there exist nice convergence bounds like those for MINRES.

Since every real matrix is self-adjoint with respect to some bilinear form, in the-
ory this idea of symmetrizing a matrix and applying MINRES can always be ap-
plied [45, 46]. In practice, the bilinear form is often difficult to obtain but there are
certain matrices, such as the persymmetric matrices described above, or Hamiltonian
matrices [26, page 215], for which the bilinear form is known and is easy to use, and
in these cases the proposed MINRES method could be used in an analogous manner.
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