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Abstract

Simulations of a flexible coarse-grained model are used to study silica aerogels. This

model, introduced in a previous study (J. Phys. Chem. C 111 [2007] 15792), consists

of spherical particles which interact through weak nonbonded forces and strong in-

terparticle bonds that may form and break during the simulations. Small-deformation

simulations are used to determine the elastic moduli of a wide range of material models,

and large-deformation simulations are used to probe structural evolution and plastic

deformation. Uniaxial deformation at constant transverse pressure is simulated using

two methods: a hybrid Monte Carlo approach combining molecular dynamics for the

motion of individual particles and stochastic moves for transverse stress equilibration;

and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable

agreement on elastic moduli is obtained except at very low densities. The model

aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clus-

tered around 0.20, and Young’s moduli that vary with aerogel density according to a

power-law dependence with exponent near 3.0. These results are in agreement with

reported experimental values. The models are shown to satisfy the expected homoge-

neous isotropic linear-elastic relationship between bulk and Young’s moduli at higher

densities, but there are systematic deviations at the lowest densities. Simulations of

large compressive and tensile strains indicate that these materials display a ductile-

to-brittle transition as the density is increased, and that the tensile strength varies

according to a power law with density, with exponent in reasonable agreement with

experiment. Auxetic behavior is observed at large tensile strains in some models. Fi-

nally, at maximum tensile stress very few broken bonds are found in the materials, in

accord with the theory that only a small fraction of the material structure is actually

load-bearing.

Keywords: aerogel, molecular simulations, coarse-grained modeling, porous materi-

als, soft matter, statistical mechanics, elastic constants
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1 Introduction

Aerogels are amorphous porous materials which exhibit a unique combination of properties

including high surface area, high porosity and low thermal conductivity.1 They are attractive

for applications in adsorption, catalysis, thermal insulation, aerospace, energy, sensing, light-

ing, and other areas.2 Aerogels of many different compositions have been prepared, ranging

from the original silica aerogels to other ceramics, pure carbon aerogels, organic/inorganic

composites, biopolymer/silica composites, and aerogels supporting metallic nanoparticles,

among other systems. Their structural and mechanical properties have been studied by

many means, both experimental and computational; the current status of aerogel research

is thoroughly reviewed in the recent Aerogel Handbook 3.

Silica aerogels are the most intensively studied aerogels and so far the only ones used

commercially on large scales. To prepare silica aerogel, a precursor species such as tetram-

ethoxysilane (TMOS) or tetraethoxysilane (TEOS) is hydrolyzed to form Si-OH (silanol)

groups, which then react to form Si-O-Si bridging bonds.4 Under suitable conditions this

process leads rapidly to a solution (“sol”) of small dense silica particles.5,6 Bond formation

between these particles leads to small aggregates, which further agglomerate to form a gel, a

mechanically rigid, system-spanning network. This “wet” gel may shrink and expel solvent

through syneresis, which involves the formation of additional bonds.4 Finally, the wet gel is

dried under conditions which prevent fracture due to capillary forces.5,6 The resulting ma-

terials have high porosity and surface area. They also have very low thermal conductivity,

due to low connectivity and the presence of “dead ends” in the gel network.2 Although silica

aerogels have been prepared with densities as low as 0.003 g/cm3 (corresponding to a vol-

ume fraction of approximately 0.001), most experimental studies and proposed applications

have focused on the density range 0.1—0.25 g/cm3, corresponding to volume fractions of

0.05—0.123.

The same structural characteristics that make aerogels interesting also make them brittle,

hindering their practical application. The mechanical properties of aerogels have therefore
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been studied in some detail. Aerogels are elastic under small strain, but at larger strains

undergo plastic deformation and irreversible structural changes.7 There have been several

studies of aerogel bulk modulus,7–12 which is found to depend on the density via a power

law K ∝ ρm with exponent m varying from 3.07 to 3.78.

The Young’s modulus, Y , which is the relevant elastic constant for uniaxial deformation,

has been studied rather more intensively, using ultrasonic measurements10,13,14, three-point

beam-bending8,15,16, uniaxial compression and tension17,18, and nanoindentation measure-

ments11,19,20. All of these studies report power-law dependence of Y on aerogel density, with

exponents ranging from 3.020 to 3.613 to 3.815 to 4.18,17 with differences appearing to come

from sample properties rather than experimental technique.

Direct measurements of the Poisson ratio (ν) have also been made. Gross et al.21 reports

values between 0.205 and 0.230, almost independent of gel density. Gross and Scherer16 find

ν = 0.2 in beam-bending experiments on a single sample. Pollanen et al.22 find ν = 0.3±0.05

from analysis of optical images, and Bhupathi et al.23 obtained ν between 0.094 and 0.143

for high-porosity samples through direct mechanical compression. Álvarez-Arenas et al.10

found ν = 0.2 from analysis of ultrasonic resonances of air-surrounded aerogel plates. We

note that many experimental determinations of Y simply assume ν = 0.27,9,24–26 or similar

values,14,27 the same value as for dense vitreous silica.

Other mechanical properties also display power-law dependence with density. Woignier

and Phalippou8 report a fracture strength exponent of 2.6± 0.2. Moner-Girona et al.20 find

that hardness varies according to an exponent of 2.0. Wong et al.18 report a tensile strength

exponent of 2.3 for aerogels prepared from polyethoxydisiloxanes. They also report that

samples with density above 0.2 g/cm3 are brittle, while those with density below 0.1 g/cm3

are ductile and very compressible.

Characterizations of aerogel are not always consistent, even when performed on the same

sample. Gross et al.21 used sound velocity measurements and static compression experiments

to obtain Y and found that values from the two techniques disagreed at both the lowest and
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highest aerogel densities. The highest density aerogel appeared “softer” and the lowest

density aerogel “harder” in the static experiment, a difference that remains unexplained.

Stark et al.19 used AFM to study the elastic properties of commercial aerogel powder particles

(Basogel, BASF) for which Y ' 6 MPa, finding that the modulus varied somewhat with

the position of the indenter on the aerogel.

Silica aerogels can be modified by physical or chemical processing to exhibit enhanced

properties. Phalippou et al.28 showed that sintering improves the mechanical properties of

aerogel and that Y ∝ ρm with m ≈ 3.3. Miner et al.29 showed that the Young’s modulus of

hygroscopic aerogels increases with relative humidity. Rosa-Fox et al.30 used nanoindenta-

tion to show that in hybrid organic/inorganic aerogels the modulus decreases with polymer

content, while Meador et al.31 showed that the Young’s modulus of silica aerogels is increased

by isocyanate cross-linking. Additional strategies used to improve mechanical properties in-

clude functionalization with trimethoxymethylsilane32 and chemical vapor deposition (CVD)

treatment with hexamethyldisilazane or hexachlorodisilane.33

Computer simulations based on atomistic, coarse-grained, and continuum methods have

also been used to investigate the mechanical properties of aerogels. Most prior work in this

area has focused on the bulk modulus, however,34–38 and only a few studies have addressed

uniaxial deformations. Ma et al.39 applied a finite element method to measure elastic moduli

in aerogel models prepared by means of an off-lattice DLCA simulation with dangling bond

deflection, treating the gel as a network of linearly elastic beams. This calculation predicted

a power-law dependence of Y on density with exponent 3.6. They also report an increase

in the Poisson ratio from 0.125 to 0.145 as the aerogel volume fraction increases from 0.03

to 0.18 (i.e., a porosity decrease from 97% to 82%), and that beam bending is the main

form of deformation when a strain is applied to the gel network. Barbero and Campo40

applied a stochastic coarse-grained approach to generate aerogel models and then calculated

mechanical properties using a recursive multiscale scheme incorporating the finite element

method. They found the expected power-law dependence of Young’s modulus on density,
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and also that the mass distribution and connectivity of the gel structure had a large impact

on both ν and Y .

We have previously introduced a coarse-grained model for studying aerogels which incor-

porates realistic interparticle bonds, stochastic chemical dynamics, Langevin-type diffusive

motion, and thermal fluctuations.38,41 This model naturally accounts for important processes

such as structural relaxation, bond breaking, and thermal motion during aerogel synthesis

and mechanical deformation simulations. Our aerogel models are prepared by simulating

the sol-gel process and then relaxing the structures obtained in a multi-stage procedure.

The resulting models can then be structurally and mechanically characterized. The first

study performed using this approach focused on the dependence of aerogel properties on

the conditions imposed during gelation41. In particular, structural properties such as frac-

tal dimension and mean pore size were shown to depend significantly on both the chemical

reactivity of the sol and on the solvent viscosity, with higher viscosity and higher reactivity

both leading to finer-textured gels with lower fractal dimension and mean pore size. This

study considered models comprised of approximately 5000 sol particles, at volume fraction

0.05 (95% porosity.) Although bulk moduli were measured, large uncertainties due to the

relatively small system size meant that the influence of gel reactivity on this quantity could

not be reliably identified. A subsequent study38 focused on more reliable determination of

bulk moduli, using an improved post-gelation relaxation protocol, larger systems consisting

of 12000 particles, and averaging of all data over three independent “realizations” (that is,

model aerogels generated under the same conditions but starting from different initial con-

figurations) in order to increase statistical quality and estimate uncertainties. With these

parameters bulk moduli could be obtained reliably, with estimated uncertainties ranging

between 20% for the lowest-modulus materials to 2% for the highest. The lowest-density

materials are the softest, but also display the largest characteristic length-scales (such as

mean pore size) and longest characteristics time-scales. Measurements at low density are

therefore most susceptible to low statistical quality both from finite run-length and sample-
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to-sample variation. Nonetheless, this study found that the model aerogels displayed a

power-law dependence of bulk modulus on density with an exponent of around 3.1 over the

entire density range studied (volume fractions ranging from approximately 0.03 to 1.1). This

value is consistent with many experimental reports as reviewed above. Reasonable quanti-

tative agreement with experimental moduli was also obtained. The dependence of modulus

on sol particle size and polydispersity was also investigated, with the finding that the key

correlate for the bulk modulus appears to be the volumetric density of interparticle bonds,

rather than the material density, as found by comparing the properties of aerogel models of

the same mean particle size but different size polydispersities.

In the present work we consider uniaxial deformations of both small and large compres-

sive and tensile strains under quasi-equilibrium isothermal conditions. Protocols for the

calculation of the Poisson ratio and Young’s modulus are developed and are shown to give

consistent results except for materials of very low density. Good agreement is found with

experimental results at both qualitative and quantitative levels. Simulations at large strains,

both compressive and tensile, are then used to probe the crossover from elastic to plastic

behavior. We demonstrate measurement of the tensile strength, the strain at maximum ten-

sile stress, and other quantities. The aerogel models are found to display a ductile-to-brittle

transition as the density is increased, and in some cases exhibit auxetic behavior under large

tensile strain.

2 Models and computational methods

The model used in this work consists of smooth, spherical “primary” (sol) particles with

density equal to that of amorphous silicon dioxide, 2.2 g/cm3 41. These interact through

weak nonbonded forces and strong interparticle bonds. This is similar to some previous

models for colloidal gels42–44 and polymer gels,45 but with a much stiffer and more complex

bonding potential incorporating both angular and torsional terms. The non-bonded forces
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between particles are modeled with a two-body shifted-center Lennard-Jones potential. The

stretching of interparticle bonds is described with a Morse potential, while bond bending

and torsional displacements are modeled with terms similar those used in standard atomistic

force fields. The functional forms and parameters used are detailed in the Supplementary

Information, along with selected other technical details of the simulations.

During a simulation, bonds may form when non-bonded particles collide. The probability

Pbond of creating a bond in a given time-step δt is related to the forward reaction rate constant

kf through Pbond = kfδt (for small Pbond)
46. By construction, bonds are created at the

equilibrium bond length (minimum energy configuration) in order to avoid any discontinuity

of forces and torques at bond creation. Two particles can share only one bond, and each

particle can have a maximum of six bonds.38

Bonds may also be broken, allowing for simulation of extreme deformations and material

failure. The various terms in the potential energy are all constructed so as to approach zero

rapidly with bond extension. At a chemically reasonable maximum distance the bond can

thus be considered broken and removed, again without introducing discontinuities in the

forces41.

2.1 Aerogel model preparation

The aerogel models used here are taken from the previous study of bulk moduli;38 their

preparation is described in detail in that work. To briefly summarize, a multi-stage protocol

consisting of initialization, gelation, and subsequent relaxations is followed. Sol particles

are first randomly inserted (with avoidance of overlap) in the simulation cell until a target

density is reached, and a short simulation by Langevin dynamics is used to thermalize the

system. Gelation is then simulated using Langevin dynamics with interparticle bonding en-

abled. These simulations are run until well after the gel point is reached, defined by the

incorporation of all sol particles into a single, system-spanning cluster; this required times

ranging between 250 ns and 2100 ns, depending on the system density and particle size. The
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as-formed gels are under tension, so in a second stage they are relaxed under isothermal-

isobaric conditions at zero pressure, for times ranging between 825 ns and 1250 ns. Bonding

may still occur in this stage, which mimics the syneresis and network reorganization that

occur during gel aging in experimental work. To accelerate relaxation, in these simulations

particles move ballistically (that is, the implicit solvent is removed.) A further isothermal-

isobaric relaxation of length between 792 ns and 2560 ns is then performed under conditions

where no further bonds may form, corresponding to aging of the “dry” aerogel (experimen-

tally, formation of silica bonds is catalyzed by the solvent4); the gel re-expands a much

smaller amount in this phase. The final model, now in a quasi-equilibrium state at zero

pressure, is suitable for mechanical analysis.

The aerogel models used here all consisted of N = 12000 primary particles. Three

types of model aerogels are considered, which differ in primary particle diameter. Type “A”

models have primary particles with diameters of 1.50 nm, type “B” have 1.75 nm diameter

particles, and type “C” have 2.00 nm particles. For each type, materials generating at five

different initial volume fractions αgel were considered, with 0.02 ≤ αgel ≤ 0.10. Note that the

density in these models is exactly proportional to the volume fraction as reported, so the two

terms may be used almost interchangeably. Finally, three independent model realizations

were prepared for each combination of volume fraction and particle size, such that a total of

45 separate model aerogel realizations were simulated. The properties reported for each type

and volume fraction are averages over the three realizations, while the reported uncertainties

are the standard deviation over the three values, as in previous work.38

2.2 Uniaxial deformation simulations

Measurement of the Young’s modulus and Poisson ratio, and, more generally, study of the

behavior of a system under uniaxial tension or compression, requires simulation under con-

ditions of either fixed length (strain) or fixed applied stress in a chosen “axial” direction,

and constant zero stress in the transverse directions. Molecular dynamics simulations un-
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der conditions of inhomogeneous stress require analytical calculation of the stress tensor

at each time step.47 The choice of interparticle bond model used here involves up to four-

body forces acting at the surfaces of the particles, which greatly complicates calculation of

the stress tensor. As a result, we have used two alternative strategies to simulate uniaxial

deformation.

The first of these is a form of hybrid Monte Carlo, or HMC.48–52 In HMC short molecular

dynamics (MD) trajectories of the whole system are treated as moves to be accepted or

rejected within a larger Monte Carlo simulation. Our approach here is to use the MD

trajectories to move the gel particles within the simulation cell at constant volume, and then

to use conventional Monte Carlo cell-deformation moves to enforce the condition of constant

transverse stress.

In MD trajectory “moves,” new rotational and translational velocities for all particles

in the system are first sampled from a Gaussian distribution of width determined by the

simulation temperature, T = 300 K, and then the microcanonical equations of motion

are integrated for several time-steps. The final state is accepted with probability Pacc =

min {1, exp [−β∆E]}, with β = 1/kBT and E the total (kinetic plus potential) energy. If a

move is rejected the coordinates of the particles are restored to the initial configuration state

prior to the MD trajectory. A leap-frog algorithm41,53 is used to ensure that the trajectories

are time-reversible, as required for the algorithm to satisfy detailed balance.51 The fraction

of trajectory moves accepted depends on both the time step of integration and the number

of steps in the trajectory. We fixed the number of MD steps to 10 and chose the time step

to give an acceptance ratio between 0.6 and 0.7, since PA = 0.651 has been suggested as

optimal for HMC simulations.52

Constant transverse stress is achieved through the use of random perturbations to the

cell dimensions orthogonal to the strain. The material is assumed to be isotropic, so that

the two tranverse cell dimensions are kept the same. If the strain is applied along direction

i, then the trial volume change is ∆V = (2rn − 1)∆AmaxLT , where rn is a uniform random
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variable on [0,1] and LT is the length of the simulation cell in the transverse directions.

Choosing a maximum change ∆Amax = 0.03% yields an acceptance ratio between 0.6 and

0.7 in these simulations. Area-change moves are accepted according to the probability,53

PV,acc = min
{

1, ∆U + Pext∆V −NkBT ln
(
V + ∆V

V

)}
(1)

where ∆U is the associated change in potential energy, N is the number of particles, V is

the initial volume, and Pext is the external transverse pressure, here zero (since these are

highly porous materials, the effect of atmosphere is not included.)

2.2.1 Measurement of mechanical properties

The actual simulation protocol used for the measurement of Y and ν is based on applying

one cycle of a sinusoidally varying strain under quasi-equilibrium conditions, accomplished

by making many small changes in one dimension of the simulation cell and following each

with short equilibration and data-collection stages. In aerogel models with volume fractions

αgel ≤ 0.03, the simulation cell length along a chosen axis is varied sinusoidally over a ±5%

range in 8000 discrete steps, returning to its original value both at the midpoint and end of the

simulation. For aerogels with αgel > 0.03 a similar procedure is used but applying strains of

only ±2.5%, to avoid fracture due to the brittleness exhibited by these materials. In the low-

density systems, the maximum discrete change in axial length is approximately 0.004%, while

in the high-density systems it is 0.002%. After each such change, 1000 Monte Carlo moves

are performed, consisting of either HMC trajectories as described above or perturbations to

the transverse area, chosen with equal probability. Bond breakage is disabled during the

first 650 moves, to ensure that the bond-breaking is a result of the tension undergone by the

model and not due to the instantaneous particle motion due to change in cell dimensions.

Data collection is performed only over the second half of the 1000-move cycle. The complete

sinusoidal cycle is therefore spread over 8 million Monte Carlo moves; 4 million transverse-
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area moves and 4 million HMC moves, corresponding very roughly to an MD trajectory of

at least 600 ns duration (assuming 60% of moves accepted and 0.025 ps time-steps.) These

conditions are sufficiently gentle to ensure that well below 0.1% of interparticle bonds are

broken during the simulations. This fraction is small enough to have no significant effect

on the resulting moduli, which was confirmed in selected cases by repeating the sinusoidal

perturbation more than once.

During these simulations, after every 10th application of strain the isothermal stresses

along the cell axes σi are calculated by numerical differentiation of the total energy as a

function of applied strain εi = ∆Li/L
0
i ,:

54

σi =
1

V0

δE

δεi
=

1

V0

[〈
δU

δεi

〉
− kBTN

]
(2)

Measurement of the axial stress σaxial as a function of strain εaxial yields the isothermal

stress-strain curve, from which we estimate the isothermal Young’s modulus Y = σ/ε. The

Poisson ratio is obtained as the slope of the transverse strain vs. the axial strain curve

ν = −dεtrans/dεaxial, determined by linear regression in the elastic region. The transverse

strain is obtained simply by measuring the average transverse cell dimensions at each axial

strain.

As the HMC approach is untested for the model and material of interest here, we also

consider an alternative simulation approach based on conventional molecular dynamics. In

this method, we also simulate a sinusoidally-varying uniaxial strain, but now with a fixed

Poisson ratio ν as input (which determines the tranverse strain.) The sinusoidal perturbation

is applied over 3×106 time steps. The dynamics include the possibility of bond breakage but

not of additional bond formation. The isothermal stress along each cell axis was calculated

numerically every 1000 time-steps. The true ν is extracted from these simulations using an

interpolation procedure described below. Further details concerning these simulations are

given in the Supplementary Information.
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2.3 Large deformation simulations

For HMC-based determination of maximum tensile stresses and study of the evolution of

aerogel structure under large deformations, slightly different protocols were used. For tensile

simulations, a 20% strain was applied linearly over 5000 discrete steps. Each step consisted

of elongation of the simulation cell followed by a block of 2000 Monte Carlo moves (either

HMC or transverse-area, as above), with data collection performed only over the latter 1000

moves of each block. For compressive strain simulations, a strain of 40% was applied over

5000 discrete steps, with relaxation and data collection as in the tensile strain simulations.

3 Results and discussion

3.1 Elastic-range simulations and mechanical characterization

Table 1: Mechanical properties of model aerogels. d is the primary particle
diameter, αgel is the volume fraction of the gels, ρa is the gel density, and YHMC

and YMD are the Young’s modulus calculated by HMC simulations and by MD
simulations (with ν = 0.20) respectively. νHMC is the Poisson ratio resulting
from the HMC simulations, while νMD is the Poisson ratio estimated from MD
simulations. εmax

x is the strain at which the maximum tensile strength σmax
x is

found, and Bmax
b is the percentage of broken bonds at that point. Numbers in

parentheses are uncertainties in the last digit, obtained by comparison of the
three independent model realizations run for each system.

Model d αgel ρa YHMC νHMC YMD νMD εmax
x σmax

x Bmax
b

[nm] [g/cm3] [MPa] [MPa] [MPa] [%]

A 1.50 0.0287(8) 0.063 1.06(8) 0.23(3) 0.88(5) 0.221(8) 0.162(8) 0.153(8) 0.21(3)

A 1.50 0.0387(4) 0.085 2.30(4) 0.21(1) 2.0(2) 0.215(3) 0.130(3) 0.28(2) 0.20(3)

A 1.50 0.0568(4) 0.125 6.0(8) 0.176(4) 5.4(5) 0.177(7) 0.101(4) 0.52(4) 0.21(3)

A 1.50 0.0765(3) 0.168 16(1) 0.20(1) 16(1) 0.211(5) 0.076(5) 0.93(8) 0.28(4)

A 1.50 0.1064(3) 0.234 52(1) 0.193(8) 47(3) 0.20(6) 0.055(4) 2.00(4) 0.36(7)

B 1.75 0.0263(1) 0.058 0.48(5) 0.22(7) 0.35(4) 0.23(2) 0.27(8) 0.10(2) -

B 1.75 0.0363(5) 0.080 1.01(6) 0.23(1) 0.9(2) 0.233(7) 0.18(5) 0.15(1) 0.24(5)

B 1.75 0.0552(1) 0.121 2.9(4) 0.21(3) 2.7(3) 0.214(2) 0.13(1) 0.32(4) 0.29(2)

B 1.75 0.0749(2) 0.165 7.3(5) 0.18(2) 7.1(5) 0.182(9) 0.093(6) 0.58(2) 0.33(3)

B 1.75 0.1032(2) 0.227 23.7(7) 0.19(1) 22.6(6) 0.185(7) 0.072(4) 1.14(3) 0.51(5)

C 2.00 0.0278(7) 0.061 0.34(2) 0.234(3) 0.23(2) 0.238(8) 0.36(9) 0.09(2) -

C 2.00 0.0383(3) 0.084 0.71(7) 0.21(2) 0.57(3) 0.22(1) 0.16(1) 0.11(2) 0.23(6)

C 2.00 0.0579(3) 0.127 2.2(2) 0.21(3) 2.0(1) 0.19(1) 0.119(6) 0.232(4) 0.26(6)

C 2.00 0.0783(5) 0.172 4.9(4) 0.20(1) 4.9(5) 0.195(7) 0.10(1) 0.40(1) 0.34(6)

C 2.00 0.1072(6) 0.236 15.2(4) 0.193(6) 14.5(7) 0.209(6) 0.075(2) 0.83(2) 0.45(5)

We first discuss simulations of uniaxial deformation performed in the near-elastic range
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for the purpose of determining moduli. As an example of the data obtained from HMC, axial

stress-strain curves from simulations of three type C aerogel models are shown in Figure 1.

Data for gels of other densities and/or particle size is similar in apperance. The slopes of these

data at zero strain are the Young’s moduli of the materials. Significant thermal fluctuation

is clearly visible, the absolute magnitude of which increases with the modulus, as expected

based on statistical mechanical grounds. Note that the sinusoidal strain protocol described

above spends more “time” at the maximum extensions than near zero strain, increasing the

density of data in such regions. Moduli calculated from these simulations are collected in

table 1. In order to confirm that the strain ranges used are appropriate (and within the

elastic region) these simulations were also analyzed using only the “inner” 75% of the strain

ranges explored (that is, ±3.75% strain for the low-density gels and ±1.875% strain for the

high-density gels). No significant differences were observed in moduli extracted from the full

and restricted data sets.
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Figure 1: Representative stress-strain curves from HMC simulations, showing the behavior
of three type C aerogels in the strain ranges used for the calculation of mechanical properties.
Straight lines are linear regressions.

For the calculation of Young’s modulus by MD we used the sinusoidal strain protocol

discussed above with a fixed ν = 0.20. In denser aerogels (αgel ≥ 0.03), MD and HMC

calculations of Y agree to within estimated uncertainties, though HMC results are often
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slightly higher. For the lowest densities, the HMC data are systematically larger than MD

results. This may be due to insufficient equilibration of one or the other methods; as discussed

earlier, the lowest density gels have the longest time-scales of dynamics and relaxation.

Some additional simulations of modestly longer and shorter length and/or strain range were

performed, but did not resolve the discrepancy. We return to this point below.
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Figure 2: Dependence of Y on αgel for types A, B, and C aerogel models. Dark symbols are
from MD calculations with ν = 0.20, while open symbols are HMC results; the lines are fits
to the HMC results.

Regardless of the approach used, the Young’s modulus increases with density according

to a power-law with exponents of 2.9 ± 0.1, 2.8 ± 0.2, and 2.8 ± 0.1 for the types A, B,

and C aerogels, respectively, as obtained from HMC simulations, or 3.0 ± 0.1, 3.0 ± 0.1,

and 3.05 ± 0.06 if using Y calculated by MD with assumed ν. These data are shown in

Figure 2. These exponents are comparable with those found experimentally,8,15,18,20,28 and

agree within uncertainties with those found for the bulk modulus in previous work38.

Obtaining the Poisson ratio from MD simulations in which all the cell dimensions are

controlled directly requires finding the value of ν that yields a constant transverse stress

of zero as strain is applied. For this purpose we perform several independent simulations,

with ν ranging 0.10 to 0.30. If the imposed ν is too low, the gel cannot contract enough in

the transverse direction and is under transverse tension, (δσ/δε)trans < 0. If the imposed
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ν is too high, then the gel is being compressed too much transverse to the applied strain,

and (δσ/δε)trans > 0. The true Poisson ratio of the material can therefore be obtained

by interpolating (δσ/δε)trans vs. ν data to find the intercept at which (δσ/δε)trans = 0. A

quadratic function was used for this interpolation; representative data for type C aerogel

models are shown in Figure 3.
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Figure 3: Estimating the Poisson ratio for type C aerogel models by means of MD simulations
with given Poisson ratio. As the Poisson ratio is increased the perpendicular stress changes
slope; using a smooth fit one may estimate the true Poisson ratio of the material as that
which yields zero perpendicular stress.

Poisson ratios as determined for all the aerogel models by both HMC simulations (direct)

and MD simulations (interpolation) are shown in Table 1. ν values in all cases vary between

about 0.17 and 0.24, with high-density gel values clustered around 0.20 or slightly below;

these data are also plotted in Figure 4. Low density gels have somewhat higher ν than higher

density gels. To the resolution of these simulations significant variation with density only

occurs for αgel ≤ 0.05 (approx. 0.1 g/cm3), which is lower in density than most (though not

all) experimentally studied aerogels.

From these simulations one can also extract axial stress-strain data, and obtain a Y -like

quantity (since the transverse stress is not zero except at the true ν, this is not exactly Y .)

In all cases we find that as the imposed ν is increased, the slope of axial stress vs. strain
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Figure 4: Dependence of Poisson ratios from both MD and HMC simulations on gel volume
fraction. The curve is a guide to the eye.

decreases. Use of fixed ν = 0.2 for determination of Young’s modulus by MD simulation

therefore leads to systematically low Y values for materials with ν < 0.2 and systematically

high values for materials with ν > 0.2. This effect may explain the slightly low YMD values

at high density table 1, but clearly not the low-density behavior; indeed, it suggests that the

YMD values (and therefore the YHMC values) are systematically high.

As a test of isotropy, simulations of uniaxial deformation were performed along multiple

cell axes in selected models, using both HMC and MD. The results, presented in Table 2,

show that Y and ν are independent of the direction of strain to within the resolution of

these simulations, indicating that the simulation cells used are large enough to contain a

representative samples of these materials.

Table 2: Evaluating isotropy of mechanical properties. αgel is the occupancy
fraction of the gels, and YHMC and νHMC are the the Young’s modulus and Pois-
son ratio calculated by HMC simulations and the Poisson ratio calculated by
MD simulations, with tension applied along the x, y, and z axis. Numbers in
parentheses are the uncertainties in the last digit.

Model αgel Y x
HMC [MPa] Y

y
HMC

[MPa] Y z
HMC [MPa] νxHMC ν

y
HMC

νzHMC ν
y
MD

νzMD

A 0.0287(8) 1.06(8) 0.97(8) 0.99(6) 0.23(3) 0.24(3) 0.22(2) 0.225(9) 0.221(8)

A 0.1064(3) 52(1) 53(2) 54(2) 0.193(8) 0.187(4) 0.194(4) 0.183(6) 0.20(6)

B 0.02633(7) 0.48(5) 0.49(3) 0.42(2) 0.22(7) 0.24(4) 0.17(4) 0.20(2) 0.23(2)

B 0.1032(2) 23.7(7) 23(2) 23(1) 0.19(1) 0.190(6) 0.18(2) 0.206(7) 0.185(7)

C 0.0278(7) 0.34(2) 0.32(3) 0.34(3) 0.234(3) 0.208(4) 0.19(3) 0.23(2) 0.238(8)

C 0.1072(6) 15.2(4) 15.2(5) 14.3(3) 0.193(6) 0.194(4) 0.197(9) 0.189(4) 0.209(6)
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For homogeneous, isotropic, linear-elastic materials, the bulk modulus K is related to

Y and ν by K = Y/[3(1 − 2ν)]. A test of this relationship for all the model aerogels is

given in figure 5, using results for the bulk modulus obtained from compression/expansion

(c/e) simulations.38 Specifically, Khom is calculated from measured Y and ν values, and the

ratio Kc/e/Khom evaluated, which should be close to 1. This is clearly true at high densities,

but there is systematic deviation at low densities. The different deviations for HMC and

MD-derived data seems likely related to the low-density disagreement between YHMC and

YMD discussed above. Overestimation of Khom could be due either to overestimation of Y

or overestimation of ν. The ν data do not vary sufficiently to explain the observed trend,

so this data suggests, again, that both simulation techniques are yielding too-high values for

Y at the lowest densities. Note that these calculations are performed using the average Y ,

ν, etc., data for each group of three model realizations, rather than independently for each

specific model instance, which may also contribute to the deviation from expected behavior.
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Figure 5: Bulk modulus from compression-expansion simulations, Kc/e, compared with that
calculated from Y and ν assuming a homogeneous isotropic medium. Data are shown for both
HMC and MD results. Uncertainties are calculated assuming independence of uncertainties
in each constituent quantity.
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3.2 Behavior under large deformations

We now turn to tension and compression beyond the elastic range. Figure 6 shows snapshots

of a type C aerogel model of αgel = 0.028 (97% porosity, the highest studied) at (a) 40%

compressive strain, (b) uncompressed, and (c) 20% tensile strain. While the uncompressed

system appears isotropic, the texture of the compressed material is significantly different.

In the gel under tension, (c), “strands” of gel network aligned in the direction of strain are

visible. The dense clusters of gel particles found in the central image are easily identified

in the compressed and extended structures at left and right, though often rotated. This

suggests that strain is accomodated by the more tenuous linkages between the clusters, and

therefore that most of the local structure is unperturbed even at these large deformations.

(b) (c)(a)

Figure 6: Snapshots of a type C aerogel model with αgel = 0.028 (a) after 40% compression
strain, (b) uncompressed, and (c) after 20% tension strain is applied. Particles are colored
by depth, with those at the front of the simulation cell in white, and those at the back in
dark grey.

Stress-strain curves for type C aerogel models under high compression and tension are

shown in Figure 7; very similar behavior was observed for type A and B models. Under

compression, the two lowest-density aerogels exhibit elastic behavior over the entire range

studied, while denser gels have much smaller elastic ranges and display abrupt transitions to

plastic behavior. At αgel = 0.058, the model begins to display plastic behavior above about

30% compression, and for αgel = 0.078 the elastic-to-plastic crossover occurs at about 10%
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Figure 7: Stress-strain curves for type C aerogel models under large compressions (left) and
tensions (right).

compression. In the densest gel, at αgel = 0.107, the elastic regime ends between 5% and

10% compression, and at compressions greater than 20% the magnitude of the axial stress

drops, suggesting that significant damage has been done to the gel structure.

Under tension, the lowest-density gel displays a nearly elastic response over the entire

range studied. For αgel ≥ 0.038 an elastic-to-plastic crossover occurs below 10% elongation.

The three highest-density materials each show a well-defined maximum in the axial stress,

the position of which moves to lower strain as the density is increased. This is consistent

with the finding from compressive simulations that the low density models have large elastic

ranges while the high density models have much smaller ones, and undergo brittle failure. We

note that similar qualitative behavior is found in experimental work on polyethoxydisiloxane

aerogels,18 where materials with densities above 0.2 g/cm3 were found to be very brittle

while those of low density (≤ 0.1 g/cm3) are ductile.

Transverse vs. axial strain data are shown in Figure 8, and point to important qual-

itative differences between high and low density aerogels. Models of all densities display

negative curvature in the range −0.20 < εx < −0.05, just outside of the elastic region, which

indicates a reduction in the effective Poisson ratio. However, for high density models the cur-

vature becomes positive for larger compressions, and ν edges towards 0.5, the incompressible

limit. These materials therefore still possess the ability to transfer stress between axial and

transverse directions, though have sustained significant damage by this point. Low-density
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Figure 8: Transverse (y) strain vs. axial (x) strain in type C aerogels with αgel = 0.028,
0.058, and 0.107, from large-extension HMC simulations. A linear fit in the elastic region
gives the Poisson ratio for these materials. The dotted line has a slope of -0.20.

aerogels, however, show only negative curvature under compression, and the αgel = 0.058

data appears near to an inflection point at 40% compression.

Under tension, the data in Figure 8 again display negative curvature for small deforma-

tions (εx < 0.10), indicating a reduction of effective ν. At higher tensions the data inflect

and the curvature becomes positive, indicating a negative effective ν (auxetic behavior);

this effect is quite strong for the highest density aerogel. Interestingly, the minima in these

curves (where ν = 0) occur at strains somewhat higher than do the maxima in the tensile

stress, so that damage to the material is likely involved. This behavior is not observed for

the lowest-density gel studied, though it is possible that it occurs at larger strains that were

studied; the change in curvature at the largest strains suggests this may be so.

We note that the coarse-grained nature of the model limits its use in simulations of large

compression strain. This simulation approach is unsuitable for work at conditions where

deformation or coalescence of the primary gel particles is expected. Under extreme com-

pression the coarse-grained model will favor a close-packing of the primary particles, while
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a real aerogel will become first a mesoporous xerogel-like structure and finally a nonporous

solid. The compressive simulations therefore cannot be continued too far without unphysical

results. Packing between incompressible particles may contribute to the upturn in perpendic-

ular strain at high compressions displayed by the densest gel in Figure 8. Tensile deformation

simulations are unaffected by this issue, however. The ability to perform simulations under

extreme tension is a useful feature of this model; in experimental work tensile deformation

of aerogels is very difficult to study.
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Figure 9: Dependence of the strain at maximum tensile stress on αgel (left), and dependence
of the maximum tensile stress on αgel (right), with power-law exponents given in the legends.
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Figure 10: Percentage of bonds broken at the point of maximum tensile stress vs. αgel, for
types A, B, and C aerogel models.

Collected estimates of the maximum tensile stress σmax and corresponding strain εmax are
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shown in Figure 9, with data also given in Table 1. Although these are rather noisy quantities

to measure, both display clear power-law dependence on the gel density; the maximum tensile

stress (that is, the tensile strength) exponents are comparable but somewhat lower than the

value of 2.3 value obtained by Wong et al.18

As a microscopic metric of the damage sustained during tensile simulations, we calcu-

lated the fraction of bonds broken at the strain of maximum stress, shown in Figure 10.

This quantity clearly increases with aerogel density; the lowest density materials only ex-

hibit around 0.2% bond breakage at maximum stress, while in the higher density materials

this reaches around 0.5%. Since the number of bonds is nearly linear with the number of

particles38, the actual number of bonds broken at this point increases rather more rapidly.

The data in Figure 10 exhibit some curvature, but it is difficult to quantify.

In all cases the fraction of bonds broken at maximum tensile stress is well under 1%. This

is interesting given that previous studies suggest that as few as 10% of bonds may carry most

of the load in these materials.34 If this is the case, then breakage of 0.5% of bonds should

perhaps be interpreted as a 5% disruption of the load-bearing network, which seems more

consistent with the large changes observed in the stress-strain and strain-strain data.

We have also considered bond breakage upon compression (data not shown). In models

with αgel ≥ 0.078, maximum compressive stresses are also identifiable (see figure 7), and at

those points between 1 and 2% of the bonds are broken, considerably more than the number

broken at maximum tensile strain.
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4 Conclusions

Uniaxial deformations and associated mechanical properties of model aerogels were studied

using both molecular dynamics and hybrid Monte Carlo methods. Measurement of mod-

uli in these materials is challenging from a simulation standpoint. Aerogels are “soft” in

comparison with most solids, but “hard” in the categorization of materials into “hard” and

“soft” matter, since the chemical bonds between particles are much stronger than kBT .

Young’s moduli from HMC and MD simulations agreed well for all but the lowest-density

model aerogels, which are both the softest and the most difficult to simulate as they dis-

play the longest-wavelength fluctuations. The moduli of the model materials displays a

power-law dependence on aerogel density with an exponent of approximately 3.0, nearly

independent of constituent particle size. This exponent is within the range reported in the

literature8,15,18,20,28 and very similar to that previously found for the bulk modulus in the

same models.38 Measurements of modulus and Poisson’s ratio along different axes indicated

that these properties are isotropic to within the uncertainty of the data, though there is

rather more anisotropy for the low-density materials than for the high density ones. Higher-

density models have moduli consistent with homogeneous elastic medium theory, but there

are deviations observed at very low densities consistent with overestimation of Y by both

methods, suggesting that considerably longer simulations are required to access the true

moduli of very low density materials.

Our models yield Poisson ratios between 0.17 and 0.23, with higher-density gels clus-

tered around 0.20, in good agreement with values measured (and assumed) in the litera-

ture.7,9,21,24–26 This agreement is rather better than that obtained in previous simulation

studies of aerogels using finite-element approaches.39 A weak dependence of Poisson ratio on

density was observed, with increased ν at the lowest densities. Experimental measurements

of ν with density at very low densities have not appeared in the literature to date. Computer

graphics visualizations suggest that at very low densities aerogels are composed of tenuous

strands of particles connecting larger clusters. This picture is consistent with the increase
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in ν, as such strands, though very weak, still effectively couple axial and transverse stresses.

We also performed simulations of uniaxial compressions and tensions of large magnitude.

Low density aerogels are found to have a much larger elastic range, with properties changing

only gradually throughout. High density aerogels fail abruptly under both tension and

compression and exhibit significant changes in Poisson ratio under compression, suggesting

brittle behavior. A similar ductile-to-brittle transition has been observed in experimental

work. These simulations also displayed power-law variation of tensile strength in reasonable

accord with experiments, and power-law variation in the strain at maximum stress. The

models displayed auxetic behavior at large tensile strain, which was unexpected. Analysis of

the model structures at the point of maximum tensile stress indicated that very few bonds

were broken at that point, supporting the hypothesis that much of the gel network does not

contribute to the mechanical strength of these materials.39

To summarize, we have performed detailed mechanical characterization of a range of

aerogel models, finding that they display behavior both quantitatively and qualitatively in

agreement with experimental materials. Most experimental work is performed on materials

occupying to the higher end of the density range investigated here, so this modeling approach

should be useful in better understanding real materials of practical interest. It appears that

further investigation of the behavior of aerogels of volume fraction below 0.03 will require

significantly longer simulations, and possibly larger simulation cells as well. Nonetheless,

our results suggest that coarse-grained simulation will be a reliable way to probe struc-

tural evolution and failure modes in aerogels under different kinds of mechanical strain, and

that simulations of this type could even be used in the design of aerogel-based hybrids and

nanomaterials for improved mechanical performance.
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