
PERVASIVE SENSING AS A MECHANISM FOR THE EFFECTIVE CONTROL OF 

CHP PLANT IN COMMERCIAL BUILDINGS 

 

Joe Clarke
1
, Jon Hand

1
, Jae-min Kim

1
, Cassim Ladha

3
,  

Karim Ladha
3
, Patrick Olivier

3
, Tony Roskilly

2
,  

Mohammad Royapoor
2
, Aizaz Samuel

1
 and Dawei Wu

2
 

1
Energy Systems Research Unit, University of Strathclyde, Glasgow, UK 

2
Sustainable Energy and Power Group, Newcastle University, Newcastle, UK 

3
Culture Lab, Newcastle University, Newcastle, UK 

 
ABSTRACT 

A recently completed, EPSRC-funded project 

researched the use of low cost, pervasive sensing to 

monitor building environmental conditions and 

occupant interactions as a means to reduce the 

uncertainties associated with the creation of a 

building model for refurbishment options and smarter 

control appraisal. 

This paper gives a brief introduction to the pervasive 

sensing system as established within the project and 

describes its use to enable simulations of the multi-

input, multi-output (MIMO) control of a combined 

heat and power (CHP) unit in a commercial building 

context. Within the project, data from pervasive 

sensing was used to calibrate a simulation model of 

an office building and impose occupant-related 

inputs at the time step level as a means to reduce 

modelling uncertainty. The MIMO input parameters 

considered include space temperatures, heat store 

temperatures, electricity demand and electricity tariff, 

while the output parameters include space heat 

supply, heat stored, electricity utilised locally or 

exported, and CHP unit fuel use. The simulation 

model was used to compare performance when the 

CHP unit is subjected to conventional and MIMO 

control. It is demonstrated that the pervasive sensing 

approach enables control that delivers enhanced 

energy performance.  

INTRODUCTION 

Low cost, pervasive sensing of environment 

conditions and occupant interactions can be used to 

provide detailed information on the use of building 

spaces. Within the reported project, a pervasive 

sensing system, termed BuildAx, was developed 

comprising physical and virtual sensors. 

A physical device encapsulates sensors for 

temperature, relative humidity, noise, illuminance 

and movement was constructed and deployed within 

several trial buildings, along with virtual sensors that 

provide information on room and IT equipment 

usage. The device, as shown in Figure 1, utilises the 

IEEE 802.15.4 compliant, 2.4 GHz Zigby protocol to 

transmit wirelessly to a central communicator via a 

self-healing MESH network, which can be extended 

via routers. Its dimensions are 77x53x33 mm and it is 

battery powered. Sampling is at 4 Hz for movement 

(Murata IRS‐B210ST01 sensor) and audio (Wolfson 

WM7120 sensor) and 6 seconds for illuminance 

(Avago APDS-9007 sensor), temperature and 

humidity (Honeywell H1H6131 sensor for both). The 

communicator is linked via USB to a computer 

where logging software integrates the data and passes 

it to downstream applications. In the present project a 

Raspberry Pi with a Linux operating system was 

employed. Both the monitoring devices and software 

are available under an Open Source license. 

 

Figure 1: a pervasive sensing BuildAx device. 

Within the project monitored data were obtained 

from a BuildAx coordinator via FTP transfer, post-

processed, transferred to a MySQL database and 

employed within a service that supports facilities 

management established using the EnTrak ‘e-service’ 

definition program (2014). As reported here, these 

data were also passed to a building energy model to 

define the time varying occupant effects within 

simulations, aiming to optimise the economic 

dispatch of a CHP unit. Previous research in this field 

has employed search algorithms based on multi-

objective constraints (e.g. Song et al 1999 and 

Vasebia et al 2007). The present approach 

complements these efforts by employing building use 

data in real time.  

To support CHP control system appraisal, a BuildAx 

pervasive sensing network was deployed within the 

Kingsgate office building at Newcastle University. 

This comprised 150 devices deployed as depicted in 

Figure 2, along with virtual sensors extracting 

information on IT equipment and room usage.  

The building is a typical commercial development 

comprising open plan and cellular offices with a 

central air conditioning system and gas-fired boiler. 



The proposal investigated was the replacement of the 

latter by a CHP unit based on a gas-fired engine. 

MODEL CREATION/CALIBRATION 

A high resolution ESP-r (2001) model comprising 82 

thermal zones was established to represent the 

building, with an air flow network superimposed to 

represent infiltration and mechanical ventilation. 

Façade shading devices were explicitly modelled 

using ESP-r’s insolation ray tracing method. Model 

geometry, construction and HVAC system details 

were based on information obtained from design 

documents and site visits. Significantly in the present 

context, the ESP-r system was modified at the source 

code level to utilise outputs from the pervasive 

sensing environment in order to impose actual 

variations in occupant presence and space 

interactions on simulations. Figure 3 shows a wire-

frame and Radiance (2014) rendered image of the 

established model. 

 

Figure 2: deployment of pervasive sensing within the 

Kingsgate building.  

The model was calibrated against monitored data, 

with judicious parameter adjustments made on the 

basis of sensitivity analyses. The most significant 

parameters, excluding occupancy effects, were the 

supply rate of fresh air and infiltration. It should be 

noted that occupancy-related data, as inferred from 

pervasive sensors and imposed on the ESP-r model 

were significantly different from assumptions made 

at the design stage to demonstrate compliance with 

building regulations. 

The calibration process was terminated when 

simulation outputs gave a satisfactory match with 

monitored data as judged by statistical goodness of 

fit parameters suggested by Williamson (1995). A 

typical winter week based on degree-day averaging 

was selected for calibration purposes and energy use 

data for heating and electricity were compared. Table 

1 shows results for electrical energy use for the initial 

and final calibration runs; both results were obtained 

with greater than 95% confidence. For this period the 

measured mean and standard deviation were 81 kWh 

and 62 kWh respectively, which compares 

favourably with the final predictions as evidenced by 

the improvement by a third in the normalised error. 

Correlation coefficients show slight improvement but 

the inequality coefficient is reduced by a quarter. The 

marked improvement in the occupant-related aspect 

of the ESP-r model contributed greatly to the 

exceptional final agreement.  

 

Figure 3: model wireframe and rendered image. 

Figure 4 provides a visual comparison of the 

electrical energy demand over a single day as 

obtained from initial and final simulation models. 

Table 1: goodness of fit parameters for predicted 

electrical energy use. 

 Initial 

model 

Final 

model 

Mean 77 kWh 80 kWh 

Standard deviation 57 64 

RMS error 1.93 1.64 

Normalised RMS error 0.0288 0.0194 

Pearson's correlation 

coefficient 
0.929 0.938 

Spearman's rank 

correlation coefficient 
0.847 0.883 

Williamson's inequality 

coefficient 
0.141 0.107 

CHP UNIT MODEL 

In practice it is difficult to optimise for the fuel use 

cost of a CHP unit because of demand dynamics and 

the complexity of part-load operation, the 

characteristics of which may not be fully known 

(Konstantakos et al 2009). Within the present study 

this difficulty was overcome by using a dynamic 

CHP model based on a laboratory-derived 

performance map. This model is able to predict unit 



heat and electricity outputs against consideration of 

part-load efficiency and time varying heat-to-power 

ratio. 

 

 
Figure 4: measured and simulated electrical loads 

initially (top) and finally (bottom). 

The major prime mover technologies for building 

CHP are gas turbines and gas engines (Wu and Wang 

2006). In relation to the heat and electricity demands 

of the Kingsgate building, a prime mover technology 

that can accommodate part-load operation is 

required. Since the gas engine responds better to a 

fluctuating load while delivering a high electrical 

efficiency in the range of 30-45% (Carbon Trust 

2010), a unit from Caterpillar was chosen with 160 

kWe rated electrical power (200 kVA at a power 

factor of 0.8) and an electrical efficiency of 30%. 

Part-load behaviour is shown in Figure 5: the unit can 

modulate down to 80 kWe. 

 Figure 5: electrical efficiency of CHP engine. 

The unit is intended to be easily modified for 

building application, with the waste heat from the 

exhaust gases and coolant water recovered via heat 

exchangers. At full capacity, the recovered heat 

content from coolant water at 99
˚
C is 174 kWt, while 

exhaust heat recovery is about 97 kWt when 

recovered at 120
˚
C. Given a heat exchanger 

effectiveness of 0.88, the maximum heat recovery 

can reach 240 kWt at rated electrical output. This 

reduces to 96 kWt at the lower limit of unit 

modulation. The part-load behaviour of the tested 

unit is shown in Figure 6. 

PERVASIVE SENSING FOR CHP 

CONTROL 

The possibilities for MIMO control considered in the 

project included combinations of 5 input control 

parameters as follows. 

P1 - space heat demand 

This parameter determines whether there is demand 

for heating within each serviced space at any time. 

For a building with pervasive sensing this input is 

provided from temperature sensing of each thermal 

zone along with information about whether the space 

is occupied or will be occupied in the near future. 

Within the simulations, the space heat demands are 

predicted on the basis of the time step updates of 

occupant behaviour as delivered by the pervasive 

sensors. 

 
Figure 6: heat recovery from CHP engine. 

P2 - heat store demand 

This parameter determines whether there is current 

capacity within a heat store. For a building with 

pervasive sensing this input may be estimated from 

the sensed store temperature. Within the simulations 

the thermal store is modelled in terms of its thermal 

capacity and passive losses.  

P3 - space electricity demand 

This parameter determines the electrical power 

requirement of each occupied space. For a building 

with pervasive sensing it is determined from the 

sensor returns defining equipment usage, lighting 

states and grid/CHP power factors. Within the 

simulations this information is updated at each time 

step. 
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P4 - electricity grid export potential 

This parameter defines the ability to ‘store’ 

electricity within the grid and reflects the practical 

constraints that may be imposed by utility providers 

such that grid export is not available at all times. It 

corresponds to a virtual sensor that would in practice 

receive a grid availability signal from the utility. 

Within the simulations various scenarios were 

imposed. 

P5 - financial incentive 

The potential advantage of CHP is the improved 

operational efficiency. This parameter defines the 

differential between CHP fuel costs, including any 

feed-in tariff incentive, and the cost of fuel when 

supplying energy by conventional means. The cost of 

energy was taken from data provided by the Energy 

Savings Trust (EST, 2014): 

Electricity = 10.58 p/kWh from 6 a.m. – 11 p.m. 

Electricity = 5.91 p/kWh from 11 p.m. – 6 a.m. 

Feed-in tariff = 4.64 p/kWh at all times 

Gas = 11.3 p/kWh 

CHP CONTROL ALGORITHM 

Typically, a CHP unit will be controlled in heat 

following mode, perhaps with heat storage for future 

use. Ambient temperature compensation might also 

be included in the control algorithm. CHP units are 

difficult to control optimally because of the dynamic 

variation in the heat and electricity demands, the 

limits imposed on unit regulation, and the feasibility 

of exporting to the electricity grid. 

Table 2 shows a control ‘truth’ table that captures 

possible states of the 5 input control parameters 

described above and those combinations for which 

the CHP unit would be switched ON or OFF. 

Instances where the financial incentive is zero 

represent times when CHP will be switched OFF and 

have not been shown for brevity. Note that in the 

present study the unit was operated in heat-following 

mode, only being activated when there is a space heat 

demand or where the thermal store (where available) 

is not full; and in both cases where the heat demand 

is greater that the minimum limit of the CHP unit. 

This means that the generated elecricity is always an 

unregulated by-product. 

The control algorithm imposed on the unit was as 

follows. 

1. Demand from zones = heat required to bring all 

zones up to their set-point temperature 

(simulation output). 

2. Demand from store = maximum store capacity – 

current store capacity – losses over previous time 

step. 

3. Total heat demand = demand from store + 

demand from zones. Assume CHP unit is ON. 

4. Demand CHP can meet = total heat demand but 

constrained within maximum and minimum CHP 

capacity limits. Establish unit efficiency and cost 

of gas from performance map. 

5. CHP unit heat to zones = minimum of 1 and 4 

6. CHP unit heat to store = heat demand at 4 – heat 

delivered at 5. 

7. Thermal store heat to zones = heat demand at 1 – 

heat delivered at 5 when limited by heat flow rate 

from store to zones. 

8. Auxiliary heat to zones = heat demand at 1 – heat 

delivered at 5 and 7 (with a lower bound of 0). 

9. Total heat supplied = heat delivered at 5/ηCHP + 

heat delivered at 6/ηCHP + heat delivered at 8/ηAUX 

where ηCHP and ηAUX are CHP and conventional 

heating system efficiencies. 

10. Cost of heat = heat supplied at 9 x gas tariff. 

11. Electricity demand from zones = electricity 

required to satisfy plug loads and equipment. 

12. Determine electricity produced by CHP from 

performance map based on heat delivered. 

13. CHP electricity to zones = maximum of 

electricity at 11 and electricity at 12. 

14. Electricity exported = electricity at 12 – 

electricity at 11 (lower bound of 0). 

15. Electricity imported = electricity at 11 –electricity 

at 13 (lower bound of 0). 

16. Total cost of electricity = electricity at 15 x 

electricity tariff – electricity at 14 x feed-in tariff 

– electricity at 12 x generation tariff. 

17. Total conventional energy cost = (heat at 1/ηAUX) 

x gas tariff + electricity at 11 x electricity tariff. 

18. Total CHP energy cost = cost at 10 + cost at 16. 

19. Switch CHP OFF if energy cost at 18 > energy 

cost at 17. 

SIMULATION RESULTS  

Within the simulation study conventional control is 

compared with smart control based on pervasive 

sensing. 

Case 0 (the base case) assumes that the CHP unit 

provides space heating via conventional control 

based on ambient and return air temperature sensing. 

Electricity export to the gird is enabled. Subsequent 

cases apply progressively more comprehensive 

control based on the presence of pervasive sensing. 

Case 1 is as Case 0 but with multiple temperature 

sensed points to enable zone control. 

Case 2 is as Case 1 but assumes the availability of a 

thermal store large enough to accommodate 20% of 

the design-day heat demand. 

Cases 3 is as Case 2 but makes use of virtual sensors 

relating to grid export and building electricity 

demand. This case represents the scenario where 

export to grid is not always feasible (perhaps because 

of power quality issues or a low broadcast tariff in a 

future smart grid). This situation (grid unavailability) 

can result in one of two possibilities when there is 

excess electrical power from the CHP unit: the 

excess power is sent to a dump load (e.g. hot water or 

battery storage), or the unit is switched OFF. The 

first situation is represented by Case 3. 



Case 4 is as Case 3 but where the CHP unit is 

switched OFF in preference to power dumping. 

Case 5 is as Case 4 but with control on the basis of an 

attempt to minimise the overall cost for heat and 

power, i.e. on the basis of economic feasibility. Table 

3 summarises the cases simulated along with the total 

cost of energy over the heating season. 

Table 3: Simulation case and total energy cost over 

the heating season. 

Case Description Total cost 

(£) 

0 
Base case (no pervasive 

sensors). 
1,603,000 

1 Zone temperature sensing. 1,378,000 

2 

As 1 with store and 

electricity export to grid 

always available. 

1,359,000 

3 

As 2 with electrical power 

sensors (export not 

always available, excess 

electricity dumped). 

1,458,000 

4 

As 3 with CHP unit 

switch off when excess 

electricity produced. 

1,366,000 

5 
As 4 with control based 

on economics. 
1,344,000 

Supplementary heating was assumed to be present in 

all cases so that temperature set-points would always 

be attained to support a fair comparison. This 

supplementary heating was activated when heat 

demand exceeds CHP supply or when demand is 

lower than the minimum CHP output. Note that the 

heat demand profile for Case 0 equates to more 

energy than Case 1. The reason for this is that with 

Case 0 there is no provision for pervasive 

temperature sensing of each thermal zone and only 

one sensor is employed in the return air stream per 

floor (as now). Heating to individual zones cannot 

therefore be switched OFF and consequently several 

zones overheat. 

Figure 7 shows the predicted heat and electricity 

demands for the building based on idealised control, 

i.e. the exact amount of heat required to keep the 

space at the set-point temperature is delivered 

regardless of how this heat is generated. These 

demand profiles are applicable to all cases except 

Case 0 for which the heat demand is similar but 

greater in magnitude. These results correspond to a 

typical winter day selected on the basis of degree-day 

averaging over the heating season. While detailed 

comparisons were made for this ‘design’ day, 

simulations to compare control regime performance 

were carried out over the full heating season. 

Figure 8 shows how demand was met for Case 1: this 

represents a 14% energy saving over Case 0. In the 

morning, demand exceeds CHP capacity by about 

60kWt but for most of the remainder of the day is 

lower than the low limit of CHP modulation (96kWt). 

Auxiliary heating is required for these periods except 

during the evening when the unit operates at part-

load and with lower electrical efficiency.  

 Figure 7: heat and electricity demand for a ‘design’ 

day. 

 

Figure 8: Case 1 heat delivered to zones (above) and 

electricity used/generated (below). 

In order to operate the CHP unit at or around full 

capacity more often, a heat store was incorporated 

(Case 2). This was sized to provide heat at peak 

hours and when the demand was beyond the CHP 

unit’s capacity. The capacity chosen was 250 kWht, 

which is 20% of the daily heat demand of Figure 7. 

Figure 9 shows the situation when the heat store is 

activated. Electricity is exported in the morning and 
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late evening as before but regular switching of the 

CHP unit is observed during the period of low heat 

demand – this rapid switching may not be acceptable 

in practice. The overall cost is reduced by 1.2%. 

 

 
Figure 9: Case 2 heat delivered to zones (above) and 

electricity used/generated (below). 

With Case 2 it is interesting to note that when the 

thermal store size was subsequently increased no 

significant further savings were made. This is due to 

ther increased passive losses from the larger store 

and indicates that in practice it may not be 

advantageous to have a heat store, especially with 

oversized CHP units. A better operational regime 

would be to use a lower capacity CHP unit with a 

heat store. This was investigated via a parametric 

analysis and the results are reported in the next 

section.  

The effect of changes as imposed in Cases 3 and 4 on 

the design day profiles is not significant when 

compared with Case 2. The effects do however 

accumulate over the heating season and for Case 3 

(excess electricity dumped) the overall cost is 

reduced by 9% relative to Case 0. For Case 4 (CHP 

unit switched OFF) the cost saving is 15%, which is 

similar to Case 1 (at 14%). Unit switching is similar 

to Figure 9 but slightly less frequent. This suggests 

that in practice higher cost saving can be realised 

because unit startup losses will be less.  

Finally, in Case 5 the CHP unit is subjected to full 

MIMO control based on a financial incentive to 

switch ON. As might be expected, the cost function 

is lowest for this case, with a reduction of 16% 

relative to Case 0. This cost was further reduced by 

20% of Case 0 when optimum plant sizes were 

assumed as described in the next section. Switching 

profiles were similar to Figure 9. 

From the results of Table 3 it is observed that the cost 

of energy required to provide heat and electricity 

decreased as the level of pervasive sensing increased.  

PARAMETRIC INVESTIGATION 

The capacity of the CHP unit is 80% of the design 

day peak heat demand. For the remainder of the day, 

heat demand is low principally due to internal heat 

gains. Because of this, the CHP unit is not active for 

much of the time in cases without a thermal store and 

switches regularly in cases with a store. Parametric 

simulations were commissioned to investigate how 

thermal store and CHP unit size affect operating cost. 

Both were varied and the findings are shown in 

Figure 10, which assignes the cost of Case 1 to be 

100%. The results suggest that there is an optimal 

CHP unit and heat store size – here 150 kWt and 200 

kWt respectively for the demand profile in question. 

 
Figure 10: proportional cost of supplying heat and 

power as a function of the indicated CHP unit 

capacity (kWt). 

CONCLUSION 

An office building was subjected to pervasive 

sensing of environmental conditions and space use at 

high temporal resolution. This information was fed to 

a detailed simulation model in order to inform 

MIMO control of a proposed CHP unit. The 

controller was then systematically enhanced by 

making available progressive levels of context 

information. The results indicated that decisions 

based on pervasive control are likely to be more 

economically feasible than those based on 

conventional control utilising parameters 

representing heating demand only. 
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Table 2: Control truth table for controlling CHP unit. 

P5 

financial 

incentive 

P4 

export 

available 

P3 

electricity 

load 

P2 

storage 

capacity 

P1 

heating 

load 

 

State of 

CHP unit 

1 0 0 0 0 0 

1 0 0 0 1 1 

1 0 0 1 0 1 

1 0 0 1 1 1 

1 0 1 0 0 0 

1 0 1 0 1 1 

1 0 1 1 0 1 

1 0 1 1 1 1 

1 1 0 0 0 0 

1 1 0 0 1 1 

1 1 0 1 0 1 

1 1 0 1 1 1 

1 1 1 0 0 0 

1 1 1 0 1 1 

1 1 1 1 0 1 

1 1 1 1 1 1 
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