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Abstract. We establish a generic upper bound ExpTime for reasoning
with global assumptions in coalgebraic modal logics. Unlike earlier results
of this kind, we do not require a tractable set of tableau rules for the in-
stance logics, so that the result applies to wider classes of logics. Examples
are Presburger modal logic, which extends graded modal logic with linear
inequalities over numbers of successors, and probabilistic modal logic with
polynomial inequalities over probabilities. We establish the theoretical
upper bound using a type elimination algorithm. We also provide a global
caching algorithm that offers potential for practical reasoning.

Arithmetic modal logics feature arithmetical constraints on the number or total
weight of successors. The simplest logics of this type compare weights to constants,
such as graded modal logic [12] or some variants of probabilistic modal logic [19,
17]. More involved examples are Presburger modal logic [7], which allows Pres-
burger constraints on numbers of successors, and probabilistic modal logic with
polynomial inequalities over probabilities. The former logic allows for statements
like ‘the majority of university students are female’, or ‘dance classes have an
even number of participants’, while probabilistic modal logic with polynomial
inequalities can assert, for example, independence of events.

These logics are the main examples we address in a more general coalgebraic
framework in this paper. Our main observation is that satisfiability for coalgebraic
logics can be decided in a step-by-step fashion, peeling off one layer of operators
at a time. We thus reduce the overall satisfiability problem to instances of a
one-step satisfiability problem involving only immediate successor states, and
hence no nesting of modalities [26, 21]. We define a strict variant of this prob-
lem, distinguished by a judicious redefinition of its input size; if strict one-step
satisfiability is in ExpTime, we obtain a (typically optimal) ExpTime upper
bound for satisfiability under global assumptions in the full logic. For our two
main examples, the requisite complexity bounds (in fact, even PSpace) on strict
one-step satisfiability follow in essence directly from known complexity results in
integer programming and the existential theory of reals, respectively; in other
words, even in fairly complex examples the complexity bound for the full logic is
obtained with comparatively little effort once the generic result is in place.

Applied to Presburger constraints, our results complement a recent result [6, 7]
showing that the complexity of Presburger modal logic without global assumptions



is PSpace, the same as for the modal logic K (or equivalently the description
logic ALC). For polynomial inequalities on probabilities, our syntax generalizes
propositional polynomial weight formulae [11] to a full modal logic allowing
nesting of weights (and global assumptions).

In more detail, our first contribution is to show via a type elimination algo-
rithm [24] that also in presence of global assumptions (and, hence, in presence of
the universal modality [13]), the satisfiability problem for coalgebraic modal logics
is no harder than for K, i.e. in ExpTime, provided strict one-step satisfiability
is in ExpTime. We then refine the algorithm to use global caching in the spirit
of Goré and Nguyen [15], i.e. bottom-up expansion of a tableau-like graph and
propagation of satisfiability and unsatisfiability through the graph. We thus
potentially avoid constructing the whole exponential-sized tableau, and provide
maneuvering space for heuristic optimization. Global caching algorithms have
been demonstrated to perform well in practice [16].

Related Work Our algorithms use a semantic method, and as such com-
plement earlier results on global caching in coalgebraic description logics that
rely on tractable sets of tableau rules [14], which are not currently available for
our leading examples. (In fact, [18] gives tableau-style axiomatizations of various
logics of linear inequalities over the reals and over the integers; however, over the
integers the rules appear to be incomplete: if ](p) denotes the integer weight of
successors satisfying p, the formula 2](p) < 1 t −2](p) < −1 is clearly valid, but
cannot be derived.)

Work related to XML query languages has shown that reasoning in Presbur-
ger fixpoint logic is ExpTime complete [30], and that a logic with Presburger
constraints and nominals is in ExpTime [3], when these logics are interpreted
over finite trees, thus not subsuming our ExpTime upper bound for Presburger
modal logic with global assumptions. It will likely be possible to obtain this
bound via looping tree automata like for graded modal logic [31]. However, this
would mean translating the target formula into an exponential-sized automaton,
making exponential runtime the typical rather than the worst case; contrast-
ingly, the main goal of our global caching algorithm is to avoid building the full
exponential-sized set of types. Description logics with explicit quantification over
integer variables and number restrictions mentioning integer variables [2] appear
to be incomparable to Presburger modal logic: they do not support general linear
inequalities, but on the other hand allow integer variables to be used at different
modal depths. Reasoning with polynomial inequalities over probabilities has been
studied in propositional logics [11] and in many-dimensional modal logics [20],
which work with a single distribution on worlds rather than with world-dependent
probability distributions as in [19, 17, 10].

1 Coalgebraic Logic

We briefly describe the key concepts of coalgebraic logic, a general framework
that allows us to treat structurally different modal logics, such as Presburger
and probabilistic modal logics, in a uniform way. We parametrize modal logics



in terms of their syntax and their coalgebraic semantics. Syntactically, we work
with a modal similarity type Λ of modal operators with given finite arities. The
set F(Λ) of Λ-formulas is then given by the grammar

F(Λ) 3 φ, ψ ::= ⊥ | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) (♥ ∈ Λ n-ary).

We omit explicit propositional atoms; these can be regarded as nullary modalities.
The operators >, →, ∨, ↔ are assumed to be defined in the standard way.

The semantics of formulas is then parametrized over the choice of a Λ-structure
consisting of a set functor T : Set→ Set and the assignment of an n-ary predicate
lifting J♥K to each modality ♥ ∈ Λ, of arity n; we briefly refer to this structure just
by T . We recall that an n-ary predicate lifting for T is a natural transformation
λ : Qn → Q ◦ T op where Q : Setop → Set is the contravariant powerset functor,
T op : Setop → Setop acts like T , and Qn denotes the pointwise n-th Cartesian
power, i.e. Qn(X) = Q(X)n. Naturality of λ then amounts to commutation with
preimage, i.e. λX(f−1[A1], . . . , f−1[An]) = Tf−1[λY (A1, . . . , An)] for f : X → Y .

The idea here is that T determines the type of systems underlying the
semantics, as the coalgebras of T : Recall that a T -coalgebra C = (X, γ) consists
of a set X of states and a map γ : X → TX, which should be thought of as
assigning to each state s a structured collection γ(x) of successors. The basic
example has T = P, the powerset functor; in this case, γ(x) is just a set of
successors, so a P-coalgebra is a Kripke frame. The predicate liftings then turn
predicates on the set X of states into predicates on the set TX of structured
collections of successors. A basic example is the predicate lifting for the usual
diamond modality ♦, given by J♦KX(A) = {B ∈ P(X) | B ∩A 6= ∅}.

Satisfaction x |=C φ of formulas φ ∈ F(Λ) in states x of a coalgebra C = (X, γ)
is defined inductively by the expected clauses for Boolean operators, and

x |=C ♥(φ1, . . . , φn) iff γ(x) |= ♥(Jφ1KC , . . . , JφnKC)

where we write JφKC = {x ∈ X | x |=C φ}, and for t ∈ TX, t |= ♥(A1, . . . , An)
is short for t ∈ J♥KX(A1, . . . , An). Continuing the above example, the predicate
lifting J♦K thus induces exactly the usual semantics of ♦, i.e. x |=C ♦φ iff the set
of successors of x intersects with JφKC .

We will be interested in satisfiability under global assumptions, or, in descrip-
tion logic terminology, reasoning with general TBoxes [1]: Given a formula ψ, the
global assumption (or TBox ), a coalgebra C = (X, γ) is a ψ-model if JψKC = X;
and a formula φ is ψ-satisfiable if there exists a ψ-model C such that JφKC 6= ∅.
The satisfiability problem with global assumptions is to decide, given ψ and φ,
whether φ is ψ-satisfiable. For the complexity analysis of these problems, we
assume a suitable encoding of the modal operators in Λ that enters into the
calculation of the size |φ| of formulas φ; in particular, we assume that numbers
occurring in the description of modal operators are coded in binary.

Previous generic algorithms in coalgebraic logic did for the most part rely on
complete rule sets for the given operators [27]. Our interest in the present paper
is in cases for which suitable rule sets are not (currently) available. We proceed
to present our leading examples of this kind, Presburger modal logic and a



probabilistic modal logic with polynomial inequalities. For the sake of readability,
we focus on the case with a single (weighted) transition relation, and omit
propositional atoms. Both features are easily added, e.g. using compositionality
results in coalgebraic logic [28], and in fact we use them freely in the examples.

1.1 Presburger Modal Logic

Presburger modal logic [7] admits statements in Presburger arithmetic over
numbers ]φ of successors satisfying a formula φ, called cardinalities. Throughout,
we let Rels denote the set {<,>,=} ∪ {≡k| k ∈ N} of arithmetic relations, with
≡k read as congruence modulo k. Syntactically, Presburger modal logic is then
defined by taking Λ to contain all modal operators of the form

La1,...,an;∼b =
∑n
i=1 ai](·)i ∼ b

where (·)i denotes the i-th argument of the operator, ∼ ∈ Rels, and a1, . . . , an, b ∈
Z. Weak inequalities can be coded as strict ones, replacing, e.g., ≥ k with > k−1.
The numbers ai and b, as well as the modulus k in ≡k, are referred to as the
coefficients of a Presburger constraint. We also apply these terms to constraints∑n
i=1 aixi ∼ b in general, interpreted over the integers.
The semantics of Presburger modal logic was originally defined over standard

Kripke frames; in order to make sense of sums with arbitrary integer coefficients,
one clearly needs to restrict to finitely branching frames. We consider an alter-
native more general semantics in terms of multigraphs, which have some key
technical advantages [5]. Informally, a multigraph is a Kripke frame but with
every transition edge annotated with an integer-valued multiplicity; ordinary
finitely branching Kripke frames can be viewed as multigraphs by just taking
edges to be transitions with multiplicity 1. Formally, a multigraph can be seen
as a coalgebra for the finite multiset functor B: For a set X, B(X) consists of
the finite multisets over X, which are maps µ : X → N with finite support, i.e.
µ(x) > 0 for only finitely many x. We view µ as an N-valued measure, and write
µ(Y ) =

∑
x∈Y µ(x) for Y ⊆ X. Then, B(f), for maps f , acts as image measure

formation. A coalgebra γ : X → B(X) assigns to each state x a multiset γ(x) of
successor states, i.e. each successor state is assigned a transition multiplicity.

The semantics of the operators is then given by the predicate liftings

JLa1,...,an;∼bKX(A1, . . . , An) = {µ ∈ B(X) |
∑n
i=1 ai · µ(Ai) ∼ b},

that is, a state x in a B-coalgebra C = (X, γ) satisfies
∑n
i=1 ai · ]φi ∼ b iff∑n

i=1 ai ·γ(x)(JφiKC) ∼ b. This setup generalises effortlessly to multiple (weighted)
transition relations: If R is a set of roles, we take the modal operators to be

Lar11 ,...,arnn ;∼b =
∑n
i=1 ai]ri(·)i ∼ b

where ri ∈ R for every 1 ≤ i ≤ n and ]r(·) is the number of successors along
the (weighted) transition relation r. Logics with operators of this kind are then
intrpreted by assigning R-many multisets of successors to each world, i.e. as
coalgebras of type X → B(X)R.

We note that satisfiability is the same over Kripke and over multigraphs:



Lemma 1. [25] A formula φ is ψ-satisfiable over multigraphs iff φ is ψ-
satisfiable over Kripke frames.

(The proof of the non-trivial direction is by making copies of states according to
their multiplicity.)

Expressiveness and Examples. Presburger modal logic subsumes graded
modal logic [12]: the graded formula ♦kφ, read ‘more than k successors satisfy φ,
becomes ](φ) > k in Presburger modal logic. Moreover, Presburger modal logic
subsumes majority logic [22]: The weak majority formula Wφ (‘at least half the
successors satisfy φ’) is expressed in Presburger modal logic as ](φ)− ](¬φ) ≥ 0.
Using propositional atoms as indicated above, we express the examples given in
the abstract by the formulas

University→ ]hasStudent(Female)− ]hasStudent(Male) > 0

DanceCourse→ ]hasParticipant(>) ≡2 0

where indices informally indicate the understanding of the successor relation,
and the formulae are sensibly understood as global assumptions. As an example
involving non-unit coefficients, a chamber of parliament in which a motion
requiring a 2/3 majority has sufficient support is described by the concept

]hasMember(SupportsMotion)− 2]hasMember(¬SupportsMotion) ≥ 0.

1.2 Probabilistic Modal Logic with Polynomial Inequalities

Probabilistic logics of various forms have been studied in different contexts such
as reactive systems [19] and uncertain knowledge [17, 10]. A typical feature of
such logics is that they talk about probabilities w(φ) of formulas φ holding for the
successors of a state; the concrete syntax then variously includes only inequalities
of the form w(φ) ∼ p for ∼ ∈ {>,≥,=, <,≤} and p ∈ Q ∩ [0, 1] [19, 17], linear
inequalities over terms w(φ) [10], or polynomial inequalities, with the latter so far
treated only in either purely propositional settings [11] or in many-dimensional
logics such as the probabilistic description logic Prob-ALC [20], which use a single
global distribution over worlds. An important use of polynomial inequalities over
probabilities is to express independence constraints [20]; e.g. two properties φ
and ψ (of successors) are independent if w(φ ∧ ψ) = w(φ)w(ψ).

We thus define the following probabilistic modal logic with polynomial inequali-
ties : the system type is given by the distribution functor D that assigns to a set X
the set D(X) of discrete probability distributions on X; again, for a map f , D(f)
takes image measures. Then, a D-coalgebra γ : X → D(X) assigns to each state
x a distribution γ(x) over successor states. We can thus view γ as a Markov chain
(interpreting γ(x) as a distribution over possible future evolutions of the system),
or as a (single-agent) type space in the sense of epistemic logic [17] (interpreting
γ(x) as the subjective probabilities assigned by the agent to possible alternative
worlds in world x). We let the modal similarity type Λ consist of modalities Lp
indexed over polynomials p ∈ Q[X1, . . . , Xn], n ≥ 0; Lp then has arity n. We



denote the application of Lp to formulas φ1, . . . , φn by substituting each variable
Xi in p with w(φi) and postulating the result to be non-negative; e.g., the formula
w(φ∧ψ)−w(φ)w(ψ) ≥ 0 denotes one half of the above-mentioned independence
constraint. We correspondingly interpret Lp by the predicate lifting

JLpKX(A1, . . . , An) = {µ ∈ D(X) | p(µ(A1), . . . , µ(An)) ≥ 0}.

2 One-Step Satisfiability

The key to our approach is to deal with modalities level by level; the core concepts
of the arising notion of one-step satisfiability checking go back to [25, 26, 21].
From now on, we mostly restrict the notation to unary operators although our
central examples all have operators with higher arities, to avoid cumbersome
notation; a fully general treatment requires no more than additional indexing. We
fix a Λ-structure T throughout. Peeling off one level of modalities and abstracting
from their arguments leads to the following notions.

Definition 2 (One-step pairs, one-step satisfiability). We assume a set V
of (propositional) variables. We denote the set of Boolean formulas over a set
Z of atoms by Prop(Z), and by Λ(Z) = {♥a | ♥ ∈ Λ, a ∈ Z} the set of modal
atoms over Z. As usual, a literal over Z is an element z ∈ Z or a negation thereof,
written εz where ε is either nothing or negation. A modal literal over Z is a literal
over Λ(Z). A conjunctive clause over Z is a finite set of literals over Z, read as a
conjunction. A one-step pair (φ, η) over V ⊆ V consists of

– a conjunctive clause φ over Λ(V ) mentioning each variable at most once, and
– a Boolean formula η ∈ Prop(V ) mentioning only variables occurring in φ.

A one-step model M = (X, τ, t) over V consists of

– a set X together with a P(X)-valuation τ : V → P(X); and
– an element t ∈ TX, thought of as the successor structure of an anonymous

state.

For η ∈ Prop(V ), τ(η) is the interpretation of η in the Boolean algebra P(X) under
the valuation τ . For a modal atom♥a ∈ Λ(V ), we put τ(♥a) = J♥KX(τ(a)) ⊆ TX.
Via the Boolean algebra structure on P(TX), this extends to an assignment
of τ(φ) ∈ P(TX) to each φ ∈ Prop(Λ(V )). We say that the one-step model
M = (X, τ, t) satisfies the one step pair (φ, η), and write M |= (φ, η), if

τ(η) = X and t ∈ τ(φ).

Then, (φ, η) is (one-step) satisfiable if there exists a one-step model M such that
M |= (φ, η). The one-step satisfiability problem is to decide whether a given (φ, η)
is one-step satisfiable, with η given as a DNF consisting of conjunctive clauses
each mentioning every variable occurring in φ. The strict one-step satisfiability
problem is the same problem, but with the input size defined to be just the size
of φ; the representation of η is, then, irrelevant. We say that Λ has the one-step



small model property if there is a polynomial p such that every one-step satisfiable
(φ, η) has a one-step model (X, τ, t) with |X| ≤ p(|φ|) (no bound is assumed on
the representation of t).

The intuition behind these definitions is that propositional variables are place-
holders for argument concepts; their valuation τ in a one-step model represents
the extensions of these argument concepts; and the second component η of a
one-step pair captures the Boolean constraints on the argument concepts that
are globally satisfied in a given model. One-step satisfiability is precisely what
will allow us to construct satisfying models later on. Note that most of a one-step
pair (φ, η) is disregarded for purposes of determining the input size of the strict
one-step satisfiability problem, as η, a propositional formula, can be exponentially
larger than the conjunctive clause φ.

Example 3. In Presburger modal logic, let φ = ](a) ≥ 1 ∧ ](b) ≥ 1. Then (φ, η)
is one-step satisfiable as long as η does not force the interpretation of either a or
b to be empty, i.e. both η ∧ a and η ∧ b need to be (propositionally) satisfiable.
Thus, the strongest possible η are a ∧ b and (a ∧ ¬b) ∨ (¬a ∧ b).

Lemma 4. A one-step pair (φ, η) over V is satisfiable iff it is satisfiable by a one-
step model of the form (X, τ, t) where X is the set of valuations V → 2 satisfying
η (where 2 = {>,⊥} is the set of Booleans) and τ(a) = {κ ∈ X | κ(a) = >} for
a ∈ V .

Under the one-step small model property, the two versions of the one-step
satisfiability problem coincide for our purposes:

Lemma 5. Let T have the one-step small model property. Then for any complex-
ity class C containing PSpace, strict one-step satisfiability is in C iff one-step
satisfiability is in C.

Although not phrased in these terms, the complexity analysis of (TBox-free)
Presburger modal logic by Demri and Lugiez [7] is based on showing that the
strict one-step satisfiability problem is in PSpace [26], without using the one-step
small model property – in fact, the latter is based on more recent results from
integer programming:

Lemma 6. [8] Every system of d linear inequalities over the integers with coeffi-
cients of binary length at most s has a solution with at most polynomially many
non-zero components in d and s.

The corresponding statement over the rationals (where in fact one has at most
d non-zero components) is well-known, and features centrally in the analysis of
probabilistic logics [11]. From these observations, we obtain sufficient tractability
of one-step satisfiability in our key examples:

Example 7. 1. Presburger modal logic has the one-step small model property.
To see this, let (φ, η) be satisfied by M = (X, τ, µ), where by Lemma 4 we can
assume that X consists of satisfying valuations of η, hence of at most exponential



size in |φ|. Let V = {a1, . . . , an}, and put qi = µ(τ(ai)). By standard estimates
in integer programming [23] we can assume that the µ(x) and, hence, the qi
(being sums of at most exponentially many µ(x)) have polynomial binary length
in |φ|. Now all we need to know about τ to guarantee that M satisfies φ is that

∑
x∈τ(ai) µ(x) = qi.

We can see this as a system of linear constraints on the µ(x), which by Lemma 6
has a solution with only m nonzero components where m is polynomially bounded
in n and the binary length s of the largest qi, and hence in |φ|; from this solution,
we immediately obtain a one-step model of (φ, η) with m states.
Moreover, again using Lemma 4, one-step satisfiability in Presburger modal logic
easily reduces to checking solvability of Presburger constraints over the integers,
which can be done in NP and hence in PSpace; by Lemma 5, we obtain that
strict one-step satisfiability in Presburger modal logic is in PSpace.

2. By a completely analogous (slightly easier) argument as for Presburger
modal logic, probabilistic modal logic with polynomial inequalities has the one-
step small model property. In this case, one-step satisfiability reduces to solvability
of systems of polynomial inequalities over the reals, which can be checked in
PSpace [4] (this argument can essentially be found in [11]). Again, we obtain
that strict one-step satisfiability in probabilistic modal logic with polynomial
inequalities is in PSpace.

By [26], these observations imply decidability in PSpace of the plain satisfiability
problem. We show below that one obtains an optimal upper bound ExpTime
for satisfiability under global assumptions. One should note that the proof of the
one-step small model property will in both cases work for any coalgebraic modal
logic over integer- or real-weighted systems whose modalities depend only on the
measures of their arguments.

Remark 8. Most previous generic complexity results in coalgebraic logic have
relied on tractable sets of tableau rules, e.g. [27, 29, 14]. These rules are of the
shape φ/η where φ is a conjunctive clause over Λ(V ) and η ∈ Prop(V ), to be
read, within a system including also the standard propositional rules, as ‘in order
to establish that ψ is satisfiable, show that the conclusions of all rule matches to
ψ are satisfiable’. E.g. PSpace-tractability [27] of a rule set essentially amounts
to the rules being codable in such a way that it suffices, for each ψ, to consider
only rules with polynomial-sized codes. In terms of one-step pairs, this means
essentially that there are certificates (in the shape of rule codes) for unsatisfiability
of a one-step pair (φ, η) that are of polynomial size in |φ| and can be checked
in polynomial space in |φ| (in particular comparing η with the conclusion of the
encoded rule), so that the strict one-step satisfiability problem is in PSpace.
Summing up, complexity bounds obtained by our current semantic approach
subsume earlier tableau-based ones.



3 Type Elimination

We now describe a type elimination algorithm that realizes an ExpTime upper
bound for reasoning with global assumptions in coalgebraic logics. Like all
type elimination algorithms, it is not suited for practical use, as it begins by
constructing the full exponential-sized set of types. We therefore refine the
algorithm to a global caching algorithm in Section 4.

As usual, we rely on defining a scope of relevant concepts:

Definition 9. A set Σ of concepts is closed if Σ is closed under subconcepts
and single negations.

We fix from now on a global assumption ψ and a formula φ0 to be checked for
ψ-satisfiability. We denote the closure of {ψ, φ0} in the above sense by Σ.

Definition 10. A ψ-type is a subset T ⊆ Σ such that

– ψ ∈ T 63 ⊥;
– whenever ¬φ ∈ Σ, then ¬φ ∈ T iff φ /∈ T ;
– whenever φ ∧ χ ∈ Σ, then φ u χ ∈ T iff φ, χ ∈ T .

The design of the algorithm relies on one-step satisfiability as an abstraction:
We denote the set of all ψ-types by S0. We take V to be the set of propositional
variables a♥φ for all modal atoms ♥φ ∈ Σ; we then define a substitution σ by
σ(a♥φ) = φ for all a♥φ ∈ V . For S ⊆ S0 and T ∈ S, we construct a one-step pair
(φT , ηS) over V by taking φT to be the set of all modal literals ε♥a over V such
that ε♥σ(a) ∈ T , and ηS a DNF consisting of all conjunctive clauses ϑ (seen as sets
of literals L) over V such that {Lσ | L ∈ ϑ} ⊆ T for some T ∈ S. Then we define
a functional E : P(S0)→ P(S0) by S 7→ {T ∈ S0 | (φT , ηS) one-step satisfiable}.

Lemma 11. E is monotone w.r.t. set inclusion.

We can thus compute the greatest postfixpoint νE of E by just iterating E :

Algorithm 12. (Decide by type elimination whether φ0 is satisfiable over ψ)

1. Set S := S0.
2. Compute S′ = E(S); if S′ 6= S then put S := S′ and repeat.
3. Return ‘yes’ if φ0 ∈ T for some T ∈ S, and ‘no’ otherwise.

If strict (!) one-step satisfiability is in ExpTime, then this algorithm has at most
exponential run time. We analyse correctness:

Definition 13. A type T is realized in a ψ-model C = (X, γ) if there exists
x ∈ X such that x |= φ for all φ ∈ T .

Lemma 14. The set of types realized in a given ψ-model is a postfixpoint of E.

By Lemma 14, all ψ-satisfiable types are in νE . Thus, the algorithm is sound, i.e.
answers ‘yes’ on ψ-satisfiable concepts. To see completeness, we show



Lemma 15. Let S be a postfixpoint of E. Then there exists a T -coalgebra C =
(S, γ) such that for each φ ∈ Σ, JφKC = {T ∈ S | φ ∈ T }.

An interpretation as in Lemma 15 is clearly a ψ-model, so that Algorithm 12 is
complete, i.e. answers ‘yes’ only on ψ-satisfiable concepts.

Theorem 16. If strict one-step satisfiability in T is in ExpTime, then satisfia-
bility with global assumptions is in ExpTime.

Example 17. By the results of the previous section and by inheriting lower
bounds from reasoning with global assumptions in K, we obtain that reasoning
with global assumptions in Presburger modal logic and in probabilistic modal
logic with polynomial inequalities is ExpTime-complete.

4 Global Caching

We now develop the type elimination algorithm from the preceding section into a
global caching algorithm. Existing global caching algorithms work with systems
of tableau rules (satisfiability is guaranteed if every applicable rule has at least
one satisfiable conclusion) [14]. The fact that we work with a semantics-based
decision procedure impacts on the design of the algorithm in two ways:

– In a tableaux setting, node generation is driven by the tableau rules, and
a global caching algorithm generates successor nodes by applying tableau
rules. In principle, however, successor nodes can be generated at will, with
the rules just pointing to relevant nodes. In our setting, we make the relevant
nodes explicit using the concept of children.

– The rules govern the propagation of satisfiability and unsatisfiability among
the nodes. Semantic propagation of satisfiability is straightforward, but
propagation of unsatisfiability again needs the concept of children: a node
can only be marked as unsatisfiable once all its children have been generated
(and too many of them are unsatisfiable).

We continue to work with a closed set Σ as in Section 3 (generated by the
global assumption ψ and the target formula φ0) but replace types with (tableau)
sequents, i.e. arbitrary subsets Γ,Θ ⊆ Σ, understood conjunctively; in particular,
a sequent need not mention every formula in Σ. We write Seqs = P(Σ). A
state is a sequent consisting of modal literals only (recall that we take atomic
propositions as nullary operators). We denote the set of states by States.

To convert sequents into states, we emply the usual propositional rules

Γ, φ1 u φ2
Γ, φ1, φ2

Γ,¬(φ1 u φ2)

Γ,¬φ1 | Γ,¬φ2
Γ,¬¬φ
Γ, φ

Γ,⊥

where | denotes alternative conclusions. (As usual, a rule Γ, φ,¬φ/ with no
conclusions is admissible.)



Definition 18. The children of a state Γ are the sequents consisting of ψ and,
for each modal literal ε♥φ ∈ Γ , a choice of either φ or ¬φ. The children of a
non-state sequent are its conclusions under the propositional rules.

We modify the functional E defined in the previous section to work also with
sequents and depend on a set G ⊆ Seqs of sequents already generated: we define
EG : P(G)→ P(G) by taking EG(S) to contain

– a non-state sequent Γ ∈ G− States iff every propositional rule that applies
to Γ has a satisfiable conclusion that is contained S, and

– a state Γ ∈ G ∩ States iff, for C the set of children of Γ , the one-step pair
(φΓ , ηS∩C) over VΓ is one-step satisfiable where VΓ contains a variable aε♥φ
for each modal literal ε♥φ ∈ Γ , and φΓ , ηS∩C are defined like φT , ηS in the
previous section, using the substitution σΓ (aε♥φ) = φ in place of σ.

To propagate unsatisfiability, we introduce a second functional AG : P(G) →
P(G), where we take AG(S) to contain

– a non-state sequent Γ ∈ G− States iff there is a propositional rule applying
to Γ all whose conclusions are in S, and

– a state Γ ∈ G ∩ States iff, for C the set of children of Γ , we have C ⊆ G and
the one-step pair (φΓ , ηC\S) is one-step unsatisfiable.

The global caching algorithm maintains, as global variables, a set G of sequents
with subsets E and A of sequents already decided as satisfiable or unsatisfiable,
respectively.

Algorithm 19. (Decide T -satisfiability of φ0 by global caching.)

1. Initialize G = {Γ0} with Γ0 = {φ0, ψ}, and E = A = ∅.
2. (Expand) Select a sequent Γ ∈ G that has children that are not in G, and

add any number of these children to G. If no sequents with missing children
are found, go to Step 5

3. (Propagate) Optionally recalculate E as the greatest fixed point νS. EG(S∪E),
and A as µS.AG(S ∪A). If Γ0 ∈ E, return ‘yes’; if Γ0 ∈ A, return ‘no’.

4. Go to Step 2.
5. Recalculate E as νS. EG(S ∪ E); return ‘yes’ if Γ0 ∈ E, and ‘no’ otherwise.

Theorem 20. If the strict one-step satisfiability problem of T is in ExpTime
then the global caching algorithm decides satisfiability under global assumptions
in ExpTime.

The key feature of the algorithm is that it avoids generating the full set of
types by detecting satisfiability or unsatisfiability on the fly in the intermediate
propagation step. The non-determinism in the formulation of the algorithm
can be resolved arbitrarily, i.e. any choice (e.g. of which sequents to add in
the expansion step and whether or not to trigger propagation) leads to correct
results; thus, it affords room for heuristic optimization. Detecting unsatisfiability
(but not satisfiability) in Step 3 requires previous generation of all, in principle



exponentially many, children of a sequent. This is presumably not necessarily
prohibitive in practice, as the exponential dependence is only in the number of
top-level modalities in a sequent. As an extreme example, if we encode ♦φ as
](φ) > 0, then the sequent {♦n>} (n successive diamonds) induces 2n types but
has only two children, {♦n−1>} and {¬♦n−1>}.

5 Conclusions

We have provided a generic upper bound ExpTime for reasoning with global
assumptions in coalgebraic modal logics, based on a generic semantic approach
centered around one-step satisfiability checking. This approach is particularly
suitable for logics for which no tractable sets of modal tableau rules are known;
our core examples of this type are Presburger modal logic and probabilistic
modal logic with polynomial inequalities. (Another example is Elgesem’s logic of
agency [9], which also satisfies the conditions of our generic result [26].) The upper
complexity bounds we obtain for these logics by instantiating our generic results
appear to be new. The upper bound is based on a type elimination algorithm;
additionally, we have designed a more practical global caching algorithm that
offers a perspective for efficient reasoning in practice.
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20. C. Lutz and L. Schröder. Probabilistic description logics for subjective uncertainty.
In Principles of Knowledge Representation and Reasoning, KR 2010, pp. 393–403.
AAAI, 2010.
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