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Abstract

Surfactant transport onto a foam film in the presence of surface viscosity has been
simulated as a model for processes occurring during foam fractionation with reflux. A
boundary condition is specified determining the velocity at the end of the film where it
joins up with a Plateau border containing surfactant rich reflux material. The evolutions of
surface velocity and surfactant surface concentration on the film are computed numerically
using a finite difference method coupled with the material point method. Results are
analysed both for low and high surface viscosities. Evolution is comparatively rapid when
surface viscosity is low, but the larger the surface viscosity becomes, the slower the surface
flow, and the lower the surfactant surface concentration on the film at any given time.
For a large surface viscosity, the surface concentration of surfactant is maintained nearly
uniform except at positions near the Plateau border where the velocity and surfactant
concentration fields need to adjust to satisfy the boundary condition at the end of the
film. The boundary condition imposed at the end of the film implies also that a drier foam
(i.e. smaller radius of curvature of the Plateau border) leads to less surfactant transport
onto the films. Moreover, the shorter the film length is, also the shorter the characteristic
time for surfactant transport onto the film surface. Thinner films however give longer
characteristic times for surfactant transport.

Keywords: Foam fractionation; Reflux; Marangoni effect; Interfacial viscosity;
Surfactant transfer; Mathematical modelling

1. Introduction

Foam fractionation is an inexpensive and environmentally friendly separation process
for recovering surface active compounds from dilute aqueous solutions [1]. The foam pro-
cess is applied for separation of various materials including proteins [1–5], biosurfactants
[6–10], microorganisms [11, 12], and other surface active materials [1]. Foam fractionation
is usually performed in a fractionation column, gas being sparged from the bottom of the
column to create bubbles which form a rising foam. The principle of the separation is

∗Corresponding author
Email address: paul.grassia@strath.ac.uk (Paul Grassia)

Preprint submitted to Elsevier July 21, 2015



by selective adsorption of a surface active material (hereafter called a ‘surfactant’) to the
surfaces of gas bubbles that are moving towards the top of the column [13].

Some foam fractionation columns are equipped with reflux to increase separation effi-
ciency [14–17] by enhancing the enrichment of the foamate. Reflux may be either internal
or external [5, 16, 18]. Internal reflux proceeds by in situ bubble coalescence redistributing
surfactant rich material onto films neighbouring those that have recently burst. Exter-
nal reflux (the particular situation we study here) proceeds by adding a portion of the
collapsed foamate back to the top of the column: it flows down through the network
of Plateau borders (channels along which three films meet) transporting surfactant to
neighbouring films as it flows pasts them. This transport is driven by Marangoni stresses:
surfactant-rich Plateau borders, which are fed by reflux material, have lower surface ten-
sions than neighbouring surfactant-lean films that are yet to benefit from reflux.

This Marangoni-driven surfactant transfer process has been the subject of a recent
study [19]. However that study neglected a potentially important interface science effect:
Marangoni-driven flows on film surfaces may be opposed by surface viscous effects [20–22].
Indeed the surface viscosity of adsorbed monolayers plays a crucial role in the formation,
stability and rheology of emulsions or foams as well as in the process of film coating,
spraying, flotation and oil recovery [23]. Surface viscosity moreover determines [24] the
velocity profile when surfactant solution flows along a Plateau border in a foam. When
surface viscosity is high, the flow pattern within the Plateau border is mainly determined
by the bulk viscosity with no slip on the walls of the border. However when surface
viscosity is low, significant motion on the walls takes place.

Despite the effect that surface viscosity has upon surfactant flows, and despite the
importance of surfactant flows to foam fractionation processes, we are not aware of any
prior studies that have specifically looked at the role of surface viscosity upon fractionation
performance. In an attempt to address this, the present study focuses on modelling
the effects of surface viscosity specifically upon surfactant mass transfer during foam
fractionation with reflux. The main focus here is not therefore on flow within Plateau
borders [24], but rather on flow on films, as well as flow between Plateau borders and
films. Our main finding is that surface viscosity reduces (possibly quite substantially)
the rate of surfactant transfer onto a film, thereby reducing the efficiency of the reflux
process during fractionation. The higher the surface viscosity of the surfactant, the longer
the time that films must spend in contact with the Plateau borders in order that reflux
material manages to transfer onto the films: this impacts on the residence time for which
films must be present in the column. Should residence times turn out to be insufficient
for transfer of a very high surface viscosity surfactant to occur, the fractionation process
would need to be modified e.g. by changing column height and/or changing the rate at
which bubbles are driven along the column.

This work is laid out as follows. Section 2 introduces the mathematical model of film
surface velocity with surface viscosity, including the assumptions used and the boundary
conditions assigned. This same section also introduces the mathematical model governing
surfactant concentration on the film. Section 3 discusses the challenges involved in quan-
tifying surface viscosity and the variability in reported measurement results. Section 4
presents simulation parameters selected for our model. The numerical solution method-
ology is presented in Section 5. The numerical results of the time evolution of surface
velocity and surfactant surface concentration are discussed in Section 6. Conclusions are
presented in Section 7.

2



2. Mathematical model of the surface velocity

Deformation of the surface of a foam film leads to surface stresses [20, 25]. Those
surface stresses can be an elastic stress or viscous stress or both. The viscous stress can
originate from shear deformation and dilational deformation of the film surface itself,
while the elastic stress originates from dilation of the film surface, and is characterised by
a Gibbs elasticity parameter. The surface shear and surface dilational viscous stresses (per
unit strain rate) are characterized by constants called respectively surface shear viscosity
and surface dilational viscosity. For a particular mode of surface deformation that involves
specified amounts of both surface shear and dilation (as e.g. in the specified geometry
to be considered below), these constants can be combined together into a single surface
viscosity parameter.

A mathematical model of the velocity within the bulk of a foam film and on its surface
is developed below: a 2-D bulk flow field and 1-D surface flow are considered (Figure 1).
For simplicity, we study a 2-D bulk field rather than e.g. an axisymmetric one here. In
dry foams at least, foam films tend to be polygonal rather than circular, so switching to an
axisymmetric field would add complexity but still not be perfectly accurate geometrically.

This section is laid out as follows. Subsection 2.1 describes the assumptions taken
to develop the model, while Subsection 2.2 introduces the equations for surface velocity.
Subsection 2.3 presents a key parameter influencing the model behaviour, while Subsec-
tion 2.4 describes the boundary conditions associated with the surface velocity profile.
Finally Subsection 2.5 discusses the surfactant conservation equation, which coupled to
the surface velocity profile, determines the rate of evolution of surfactant concentration.

2.1. Assumptions of the model

The mathematical model of surface velocity in this study is developed based on the
following assumptions:

• At initial time, the surface concentration of surfactant along the film is uniform.

• The surface concentration of surfactant on the Plateau border is fixed all the time to
the value set by the reflux to the foam fractionation column. This is higher than the
initial surface concentration on the film. Whilst it is possible in principle to general-
ize to the case where the surfactant concentration in the Plateau borders gradually
decreases as material is transferred across to the films, this is a complication we
have chosen to ignore here. What matters for driving flow is the surfactant con-
centration difference between borders and films, and this concentration difference
decreases with time as the film surfactant concentration rises, even when changes
in the Plateau border concentration are ignored.

• The liquid in the film is incompressible and Newtonian. The film surface is however
viscoelastic, supporting both surface viscous stress and elastic Marangoni stress.

• The film is taken to be flat and has uniform thickness along its length [19, 26,
27]. Moreover liquid drainage from films is ignored, so film thicknesses are held
constant with time. These assumptions are mathematically convenient, as they
greatly simplify the flow fields we need to compute. It should be mentioned however
that foam films are known to develop non-uniform, dimpled shapes [28–30], whilst
film drainage tends to oppose Marangoni-driven surfactant motion from surfactant-
rich Plateau borders to surfactant-lean films [19].
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• The thickness of the film is much smaller than its length, consequently the associated
Reynolds number, with length scale based on the film thickness, is very small [31]
and a lubrication approximation is assumed [32–38].

• The Plateau border, which has a tricuspid shape, has a characteristic size that is
intermediate between the film length and the film thickness, but may well contain
rather more liquid than the exceedingly thin films.

The mathematical model for evolution of surfactant surface concentration (developed
by [19] and to be employed in what follows) utilises the following additional assumptions.

• Films are sufficiently thin (or equivalently surfactant solubility is sufficiently low)
that the surface excess of surfactant dominates any surfactant in solution in the bulk
of the film. In other words, even if surfactant manages to diffuse from film surfaces
across their bulk [33], the surfactant that is ‘lost’ from the surface is insignificant
compared to the overall surfactant budget. Recall also that film drainage is ignored
from our model, as was stated previously. Were film drainage to be present however,
any material that diffuses from the film surface to the film interior, would in principle
be advected by the film drainage velocity field back towards the Plateau border,
leading to quite a complex transport process overall that we choose to neglect here.

• Marangoni-driven surfactant flows along surfaces are much faster than surfactant
diffusion along surfaces.

2.2. Governing equations

The equation for the profile of surface velocity taking into account the surface viscosity
is developed based on lubrication theory and driving Marangoni-stresses. The equation
governing the profile of the surface velocity (which can be obtained from a generalisation
of a procedure outlined by [19], and which involves a straightforward balance between
the viscous shear stress immediately below the surface and the gradient of surface elastic
tension and surface viscous tension along the surface) turns out to obey [39]:

us =
δ0
3µ

[

∂γ

∂x
+

∂

∂x

(

µs
∂us

∂x

)]

(1)

where us is the surface velocity, x is the distance from the centre of the film along its
length, δ0 is the half thickness of the film, µ is the liquid viscosity, γ is the surface tension,
µs is the surface viscosity.

We use a simple Gibbs elasticity model [40] to convert between surface tension γ and
surfactant surface excess Γ:

dγ/d ln Γ = −G (2)

where G is a Gibbs parameter that we take to be a constant. This captures the tendency
of γ to decrease as Γ increases, but represents nonetheless a considerable simplification
of the true relation between γ and Γ (contrast e.g. the much more complicated relations
in [41]). Equation (2) was used in [19] because it leads to a convenient linear relation
between surfactant concentration gradient and surfactant flux, giving (in the absence of
surface viscosity) a linear partial differential equation for the spatio-temporal evolution
of Γ. We adopt the same model here to facilitate comparison between results with and
without surface viscosity.
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We deduce

us =
δ0
3µ

[

∂

∂x

(

−G ln
Γ

ΓPb

)

+
∂

∂x

(

µs
∂us

∂x

)]

(3)

where ΓPb is the (fixed) surface excess of surfactant on the surface of the Plateau border.
This is larger than the surface excess on the film (Γ or ΓF0 initially at time t = 0). The
right hand side of equation (3) represents a Kelvin-type viscoelastic model for a foam
film surface, and corresponds to what was done by [40]. We note however that there are
competing Maxwell-type viscoelastic models in the literature [42, 43].

A dimensional analysis was carried out upon equation (3) and results in:

u′

s = −
1

3

∂ ln Γ′

∂x′
+

δ′0µ̄s

3

∂2u′

s

∂x′2
. (4)

where u′

s = usµ/Gδ′0 is the dimensionless surface velocity, δ′0 = δ0/L is the dimensionless
half film thickness, δ0 is the half film thickness, L is half of the film length, x′ = x/L is
the dimensionless distance from the centre of the film along its length, Γ′ = Γ/ΓPb is the
dimensionless surface excess of surfactant and µ̄s = µs/µL is the dimensionless surface
viscosity. The dimensionless surface viscosity is the reciprocal of the surface mobility
parameter identified in previous studies [24, 44].

2.3. Role of the parameter δ′0µ̄s

The parameter δ′0µ̄s is important in equation (4) since it determines the effect of
surface viscosity upon the system (an estimated value for this parameter will be provided
shortly). If δ′0µ̄s is small, the effect of surface viscosity is weak, and the equation of the
surface velocity profile can be simplified as follows:

u′

s = −
1

3

∂ ln Γ′

∂x′
(5)

which indicates that film surface velocity is driven by Marangoni effects [19], any surface
viscous effects being neglected.

Note a significant difference between equation (4) and (5). Whereas the former equa-
tion is a second order differential equation in space (and so the velocity field can only be
determined given suitable boundary conditions, which we will consider in Subsection 2.4),
the latter gives the velocity u′

s directly once the surfactant concentration field Γ′ vs x′ is
known. There is no guarantee in this case that boundary conditions on u′

s will be met.
This then indicates that even in the limit of small δ′0µ̄s, the velocity field might need

to deviate away from equation (5) in boundary layers. Equation (4) implies that the char-
acteristic thickness of these boundary layers must be order (δ′0µ̄s)

1/2, since for a boundary
layer on that length scale, the nominally ‘small’ surface viscous term in equation (4)
namely 1

3
δ′0µ̄s ∂

2u′

s/∂x
′ 2 becomes comparable with the other two terms in that equation.

Further discussion about these boundary layers can be found in the appendix.
On the other hand, if δ′0µ̄s is very large, there is balance between the Marangoni effect

and surface viscosity, and it turns out that u′

s ≪ 1. In this limit it is convenient to rescale
the velocity, i.e. to define u′′

s such that u′′

s = δ′0µ̄s u
′

s (or equivalently u′′

s = usµ̄s/GL) so
that equation (4) becomes

3u′′

s

δ′0µ̄s
= −

∂ ln Γ′

∂x′
+

∂2u′′

s

∂x′2
. (6)
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As a result, for δ′0µ̄s ≫ 1, we can simplify into the following equation:

∂2u′′

s/∂x
′ 2 = ∂ ln Γ′/∂x′. (7)

Equation (7) indicates that the total film tension which consists of the Gibbs-Marangoni
and surface viscosity contributions is spatially uniform when δ′0µ̄s is very large. It turns
out that the solution of equation (7) for u′′

s can be expressed in terms of an integral over
ln Γ′ as is described in the appendix. Nonetheless equation (7), like equations (4) and (6),
can however only be solved uniquely given suitable boundary conditions.

The determination of the boundary condition is presented in the following subsection.

2.4. Boundary conditions

The surface velocity u′

s must vanish midway along the film (i.e. at x′ = 0) on symmetry
grounds. In addition, due to symmetry on the Plateau border, the value of u′

s must also
fall to zero at the ‘symmetry point’ of a tricuspid Plateau border (see Figure 2). The
‘symmetry point’ is the midpoint of the curved section of each tricuspid arc. Since each
of the tricuspid curves subtends an arc π/3, the angle subtended between the cusp and
the symmetry point is π/6, making the distance (measured along the film) between the
cusp and the midpoint be L′

Pb = a′π/6, where a′ = a/L is the dimensionless radius of
curvature of the Plateau border and a is the radius of curvature of the Plateau border.
We can also think of the parameter a′ as being connected with the liquid fraction of the
foam [45]: the volume of liquid contained in the Plateau borders around a bubble relative
to the bubble volume itself scales proportional to a′ 2.

We can take the (dimensionless) distance from the centre of the film to the ‘symmetry
point’ of a tricuspid Plateau border (measured along the surface) as 1 + a′π/6. On
symmetry grounds, the velocity component along the surface accelerates away from the
the symmetry point where it vanishes (or equivalently decelerates towards the symmetry
point). Surface viscosity couples the motion of nearby points to one another: given the
comparatively small size of the Plateau border (compared to the film length), points
towards the end of the film may well be influenced by the fact that the symmetry point of
the Plateau border remains stationary. In particular, if the surface viscosity is large, the
fact that the velocity component must be zero at the symmetry point will couple back to
the film, keeping the surface flow very small especially at the end of the film. Moreover
the drier the foam (i.e. the smaller the value of a′) the more strongly the end of the film
is coupled to the stationary Plateau border symmetry point, and the less the permitted
surfactant transfer onto the end of the film.

The surface of the tricuspid Plateau border is of course a complicated 2-D shape. As
a simplifying approximation, we unfold it into a 1-D line. By ‘uncurling’ the surface of
the tricuspid Plateau border, we simplify the geometry as well as the mathematics but
still capture the essential physics of the flow accelerating away from the symmetry point
(or equivalently decelerating towards the symmetry point).

Two boundary conditions are required to solve the differential equation (4). One
boundary condition is at x′ = 0 where we have u′

s|x′=0 = 0. The other boundary condition
is taken at x′ = 1 by imposing the constraint at the symmetry point of a tricuspid Plateau
border and supposing that u′

s is nearly linear in x′ over the domain 1 < x′ < 1+a′π/6 (i.e.
the surface velocity decelerates uniformly between the end of the film and the symmetry
point of the Plateau border). Therefore, the boundary condition at the end of the film
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near the Plateau border is as follows:

∂u′

s

∂x′

∣

∣

∣

x′=1
=

0− u′

s|x′=1

a′π/6
(8)

rearranging to:

u′

s|x′=1 +
a′π

6

∂u′

s

∂x′

∣

∣

∣

x′=1
= 0. (9)

The velocity boundary condition at the end of film in equations (8) and (9) is shifted
to x′ = 1 instead of at the symmetry point itself at x′ = 1+a′π/6. The reason for shifting
the boundary condition in this fashion is that the fluid flow and the surfactant mass
transfer model that we analyse considers only the domain of the film (i.e. 0 < x′ < 1)
without any detailed model for the Plateau border (1 < x′ < 1+a′π/6). The detailed flow
field in the Plateau border itself is very complex – with flow changing direction within
the border – and it is beyond the scope of this study.

Having a boundary condition at x′ = 1 is also convenient when solving the mass
conservation equation for surfactant (since Γ′ only needs to be computed in the domain
0 < x′ < 1) and one can simply assume that surfactant coverage on the Plateau border
is fixed. This follows because typically, the bulk of the liquid in a foam is in the Plateau
borders (meaning that the Plateau border surfaces can continually be replenished by
surfactant arriving from the interior of the borders). This does not contradict the notion
of the surfactant being nominally ‘low solubility’ which only requires that surfactant be
present primarily as surface excess on the length scale of the (exceedingly thin) films.

According to equation (9) the velocity at the end of the film, u′

s|x′=1 can be affected
by the parameter a′, which is normally quite a small parameter (being the ratio between
the length scale of the Plateau border cross section and the length scale along the films).

Recall however that when the parameter δ′0µ̄s ≪ 1, the velocity field both near x′ = 0
and near x′ = 1 is potentially affected by boundary layers, the relevant boundary layer size
being order (δ′0µ̄s)

1/2. In practice no boundary layer arises near x′ = 0, the reason being
that ∂ ln Γ′/∂x′ vanishes there on symmetry grounds, and equation (5) then predicts the
correct boundary condition u′

s|x′=0 = 0 even with vanishing surface viscosity. A boundary
layer does however arise near x′ = 1. In fact, very different behaviour is expected according
to whether the boundary layer size of order (δ′0µ̄s)

1/2 is lesser or greater than the distance
πa′/6 to the symmetry point of the Plateau border. The reasons for this are as follows.

In the case where the boundary layer size is much less than the distance to the border
symmetry point, i.e. (δ′0µ̄s)

1/2 ≪ πa′/6, the boundary layer is effectively unaware of the
constraint imposed by the Plateau border symmetry point, and so a comparatively large
velocity is permitted at x′ = 1 transferring surfactant from Plateau border to film. On
the other hand, when (δ′0µ̄s)

1/2 ≫ πa′/6, the boundary layer on the film is well aware
of the constraint arising from the Plateau border symmetry point, and (as a result) the
surfactant velocity at the end of the film is substantially reduced. Further details of this
situation can be found in the appendix.

This completes our model of the surface velocity field on a foam film in the presence
of surface viscosity. This surfactant velocity field then advects the surfactant causing the
surfactant concentration to change: this process is considered in the next subsection.

2.5. Evolution of surfactant concentration

As in previous work [19], we adopt the following conservation equation for the evolu-
tion of surfactant surface concentration or excess (which is itself a special case for a flat
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interface of a more general equation considered by [46])

∂Γ′/∂t′ + ∂(Γ′u′

s)/∂x
′ = 0. (10)

Here t′ is a dimensionless time related to dimensional time t via t′ = tGδ′0/Lµ. Clearly
equation (10) is a partial differential equation for Γ′ to be solved along with the ordinary
differential equation (4) governing u′

s. The technique for solving this equation will be
discussed later on in Section 5, but for the moment we just make some brief remarks.

In the limit when δ′0µ̄s ≫ 1, we have already discussed how we can rescale dimen-
sionless velocity (with rescaled velocity u′′

s equal to δ′0µ̄s u
′

s). In a similar fashion we can
rescale time, with rescaled time t′′ defined as t′′ = t′/(δ′0µ̄s), implying that t′′ = tG/µs.
The form of equation (10) then remains unchanged provided we replace t′ by t′′ and u′

s by
u′′

s . Remember also (as commented in Subsection 2.3) that in the limit as δ′0µ̄s ≫ 1, the
velocity field u′′

s can be obtained in terms of an integral of ln Γ′. If this is substituted into
the surfactant conservation equation we have an integro-differential equation for ln Γ′.

Whether we adopt the differential equation formulation of equation (10) (for finite
δ′0µ̄s) or the integro-differential equation formulation (for δ′0µ̄s ≫ 1) we need to supply
initial and boundary conditions for dimensionless surfactant concentration Γ′. Initially
the surfactant concentration is assumed to be uniform, Γ′ = Γ′

F0 where Γ′

F0 is a dimen-
sionless constant (being the ratio between the dimensional concentrations ΓF0 and ΓPb

respectively on the film and Plateau border). Here Γ′

F0 is smaller than unity, since in
the process of foam fractionation with reflux, comparatively surfactant-lean films con-
tact comparatively surfactant-rich Plateau borders. The boundary condition meanwhile
is that the dimensionless surfactant concentration at the point x′ = 1 at the end of the
film satisfies Γ′|x′=1 = 1 for all times t′ > 0. In other words the dimensional surfactant
concentration at the end of the film matches the surfactant concentration on the Plateau
border. Note that (as has already been mentioned in Subsection 2.4) at the midpoint of
the film x′ = 0 a symmetry condition ∂Γ′/∂x′|x′=0 = 0 also applies, but we do not need to
impose this explicitly: it arises naturally from the symmetries of the governing equations.

This completes our formulation of the model for evolution of surfactant concentration.
However in order to compute with the model we require values of model parameters, in
particular values for the relevant surface rheological material properties. Unfortunately
however these are not always readily obtained (as we explain in the next section).

3. Variability of measurements of surface viscosity

Measuring surface viscoelastic properties is very challenging since those properties are
affected by environmental contamination [47]. Moreover, it is not always easy to distin-
guish between surface elasticity and surface viscosity [47], and, as a possible consequence it
has been observed that different experimental methods to determine the surface viscosity
result in measured values of surface viscosity differing by orders of magnitude [47–49]. Fur-
thermore foam fractionation (our target application) is often employed as a technique for
purifying proteins, but proteins can exist in many conformational states at surfaces [50],
each state having different viscoelastic properties. Indeed the conformational state (and
hence the viscoelastic properties) can change during the course of an experiment.

In this study we will use as a ‘base case’ a value for surface viscosity of bovine serum
albumin (BSA) together with a cosurfactant propylene glycol alginate (PGA) as reported
by [40]. We note however that for the common surfactant SDS the particular measurement
technique of [40] determined surface viscosity values 5 orders of magnitude higher than
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measurements on SDS performed by other authors [49]. Hence it is possible to speculate
that the surface viscosity reported by [40] for BSA/PGA could be likewise too high.

The study of [40] also provided our ‘base case’ value of the half film thickness δ0.
That study ignored film drainage, whereas a fully drained ‘common black’ film (half
thickness denoted δcb) would have a thickness orders of magnitude smaller than our base
case thickness value.

We already commented (Subsection 2.3) how the effect of surface viscosity appears
as a product δ′0µ̄s, the parameter δ′0 being dimensionless half film thickness and µ̄s being
dimensionless surface viscosity. The effect of possibly having a dimensionless surface
viscosity orders of magnitude smaller than our ‘base case’ is achieved analogously in what
follows by reducing the dimensionless film thickness, thereby replacing the non-draining
film of [40] by a much thinner one that is substantially closer to a common black film.

4. Parameters for simulation

Typical parameter values for the simulation are presented in Table 1 while the relevant
dimensionless parameters are presented in Table 2.

All parameters except the values of ΓPb, ΓF0, δcb, δ0 and a were taken from [40] using
protein BSA together with a cosurfactant PGA, both at concentration of 4.0 g L−1. The
value of a was estimated as presented in [19], while the value of δcb was taken from [45].
The values of ΓPb, ΓF0 are estimates, taken as lower than the maximum surface excess
Γmax of BSA which was reported in a study by [51] to be Γmax = 5× 10−8 mol m−2. We
reiterate these are base-case parameter values and variations about the base case will be
considered in the simulations.

The quantity δ′0µ̄s is the key parameter to determine the effect of surface viscosity
upon the system. Using the base-case parameters presented in Table 1, the value of
that key parameter is δ′0µ̄s = 3.5 ± 1.4. However, as already mentioned there is a lot of
uncertainty associated with this parameter, with the possibility of much smaller values
being relevant. Under such circumstances, it is useful to understand how the system
behaves in the limiting cases of small and large values of this parameter. This is achieved
in Section 6, starting first of all with small δ′0µ̄s and then progressing onto large δ′0µ̄s.

In the first instance we have elected to access small δ′0µ̄s values, via keeping µ̄s fixed
(at the base case value of 886 given in Table 2), whilst reducing δ′0, specifically taking the
δ′0 value to be 6× 10−5, intermediate between δ′cb (namely 3× 10−6, the smallest allowed
value as mentioned in Table 2), and the base case δ′0 (which is 4× 10−3 in Table 2). The
resulting value of δ′0µ̄s is now 5.4 × 10−2 and so is significantly smaller than unity. One
consequence of reducing film thickness (it is now 66 times smaller than the base case) is
that we also increase the characteristic time scale shown in Table 1 by the same factor:
instead of being 0.134 s, it is now close to 9 s.

To access a large δ′0µ̄s we have decided to retain the same δ′0 value as just discussed
above (namely 6 × 10−5) but to increase µ̄s by two orders of magnitude (from the base
case µ̄s value of 886, to a new value of 8.86 × 104). The resulting δ′0µ̄s is now slightly
larger than the base case value quoted in Table 1, specifically δ′0µ̄s now equals 5.4 instead
of the base case value 3.5.

The parameter ranges used specifically in these small and large δ′0µ̄s computations are
presented in Table 3. The base case a′ value is a′ = 0.1. Most of our computations are
done for this value, but a small number of them will be done for a′ = 0.25 corresponding
to a wetter foam. The parameter Γ′

F0 is fixed at 0.5, i.e. only half as much surfactant
concentration on the film surfaces initially as on the Plateau borders.
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We reiterate that the key parameter here is δ′0µ̄s which according to Subsection 2.3
affects the velocity field u′

s and/or u′′

s , and this in turn influences the evolution of Γ′.
Our main aim here is to determine how δ′0µ̄s affects surfactant transport by solving the
governing equations numerically. Additional insight into the role of this δ′0µ̄s parameter
can however be gained by obtaining analytical expressions for u′

s and/or u′′

s for given
simple analytical forms of Γ′: these are taken up in the appendix. The simple analytical
forms of Γ′ might only apply for a restricted set of times, since Γ′ is continually evolving.
The velocity fields one determines are nevertheless instructive as the appendix explains.

5. Numerical solution technique

The numerical solution technique for equation (10) follows a material point method
used by [19]. We outline the method briefly here, but readers should refer to [19] for
more details. Discrete material points are distributed along the foam film surface and
also (in the specific case of a foam fractionation column with reflux) where the film
meets a surfactant rich Plateau border. Velocities of each material point are computed,
in the present case incorporating surface viscosity by a finite difference method applied
to equation (4). The material point positions change on every time step, leading to
uneven spatial intervals over time. To keep the spatial intervals even, a bookkeeping
operation is applied at the end of every time step to restore equal width intervals: this
then recovers second order spatial accuracy for the numerical scheme. The mechanism
of the bookkeeping operation is similar to the one reported in the previous study [19].
Moreover the temporal accuracy of the numerical simulation is improved using a predictor-
corrector method namely Heun’s method [52, 53].

The system is discretised [54] into I+1 spatial (material) points, i.e. I spatial intervals,
and N time steps. Values of I ranged between 200 and 250, whilst values of N ranged
between 10000 and 20000. In the case of a small δ′0µ̄s, specifically δ′0µ̄s = 5.4 × 10−2, we
chose I = 250 giving a spatial interval ∆x′ = 4 × 10−3. Moreover we chose N = 20000
and integrated to t′ = 2 (corresponding to a time step ∆t′ = 10−4). In the case of a large
δ′0µ̄s, specifically δ′0µ̄s = 5.4, we chose I = 200 giving a spatial interval ∆x′ = 5 × 10−3.
Moreover we chose N = 10000 and integrated to a rescaled time t′′ = 20 (corresponding
to a time step ∆t′′ = 2× 10−3).

In addition to the above, we performed a number of convergence tests, including
doubling the number of spatial steps and/or halving the number of time of steps, and
looking at the root mean square of differences in predicted Γ′ vs x′ profiles at either t′ = 2
or t′′ = 20 This resulted in a root mean square difference of 2× 10−3 (or less) comparing
coarser vs finer spatial grids, and a root mean square difference of 10−4 (or less) comparing
coarser vs finer temporal grids.

Recall (from Subsection 2.5, and also the appendix) that for δ′0µ̄s ≫ 1 we can replace
the differential equation (10) by an integro-differential equation. We solved this on a fixed
(Eulerian) grid with I = 200 spatial intervals and N = 20000 time steps out to t′′ = 20.

Typical run times for our programs were on the order of a few minutes. Results from
these programs are presented in Section 6 below.

6. Evolution of surface velocity and surfactant surface concentration

In what follows numerical results are presented for velocity and surfactant surface
concentration fields. Bearing in mind the different behaviours expected between the cases
δ′0µ̄s ≪ 1 and δ′0µ̄s ≫ 1, we treat these two cases in turn. Subsection 6.1 presents
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the evolution of surface velocity and surfactant surface concentration in the case where
δ′0µ̄s is significantly smaller than unity, specifically δ′0µ̄s = 5.4 × 10−2. Subsection 6.2
deals with the case where δ′0µ̄s is significantly larger than unity, specifically δ′0µ̄s = 5.4.
Subsection 6.3 discusses the effects of considering different film lengths.

6.1. Evolution in the case where δ′0µ̄s ≪ 1

Data shown in this subsection have δ′0µ̄s = 5.4× 10−2, a′ = 0.1 and Γ′

F0 = 0.5.
Surface velocity profiles are presented in Figure 3. At early times, velocity is near

zero far from x′ = 1, as velocity profiles are sharply peaked near x′ = 1. The maximum
surface speed occurs very slightly to the left of x′ = 1 however, due to a need to meet the
velocity boundary condition at x′ = 1. At later times the velocity distributions are more
spread out and the peak speeds are less.

The corresponding surface concentration of surfactant is presented in Figure 4. Over
time the surfactant concentration grows and the surfactant concentration profile becomes
increasingly spread out. For comparison the evolution of surfactant surface concentration
in the absence of surface viscosity is presented in Figure 5. Comparing the surface con-
centrations calculated in the presence of surface viscosity and in its absence, it appears
that surfactant transport onto the foam film is slower in the case with surface viscosity.
At early time, the growth of surfactant surface concentration obtained using the model
with surface viscosity is actually much slower than that obtained using the model with-
out surface viscosity. The mass of surfactant transferred in fact grows like square root of
time in the absence of surface viscosity [19], but only linearly in time in the presence of
surface viscosity (because surface viscosity keeps the film velocity finite even for an arbi-
trarily sharp gradient of surfactant concentration). At later time, the relative difference
of surface concentration obtained using those two models becomes smaller.

The spatially-averaged surfactant surface concentration over time with surface vis-
cosity can be compared with that in the case without surface viscosity and the result is
presented in Figure 6. In the case without surface viscosity, at early time, the rate of
accumulation of surfactant on the surface of the film is faster than that in the case with
surface viscosity. This is shown by the steep increase of surface concentration at early
time for the case without surface viscosity. In the case with surface viscosity, this early
time growth is moderated by the surface viscous effect. At later time, the rate of accu-
mulation of surfactant on the surface of the film slows down, and the predictions in the
presence and absence of surface viscosity are similar (albeit with slightly less surfactant
transferred in the former case).

6.2. Evolution in the case where δ′0µ̄s ≫ 1

In the case where δ′0µ̄s ≫ 1, it is convenient to rescale the dimensionless velocity and
time as described in Subsections 2.3 and 2.5. The rescaled equations are solved either
via finite differences with the material point method (see Subsection 6.2.1) or via an
integro-differential equation (see Subsection 6.2.2). Subsection 6.2.3 considers analytic
approximations to the solutions, whilst Subsection 6.2.4 contrasts large vs small δ′0µ̄s.

6.2.1. Solution using finite difference method for the case of δ′0µ̄s ≫ 1

This subsection presents results for the case where δ′0µ̄s = 5.4, a′ = 0.1 and Γ′

F0 = 0.5.
The profiles of surface velocity obtained are presented in Figure 7. It is clear that

gradients of surface velocity are nearly spatially uniform away from x′ = 1. This is in
fact the behaviour expected (see the appendix). At early time, the magnitude of u′′

s
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(in this region away from x′ = 1) grows. If the width of the region near x′ = 1 over
which the surfactant concentration deviates from uniformity grows, the magnitude of
∂u′′

s/∂x
′ (and hence of u′′

s itself) outside this region also grows, again as predicted in
the appendix. At later times however, the magnitude of ∂u′′

s/∂x
′ decays, since gradients

of surface concentration eventually decay as surfactant accumulates on the film surface,
implying that the Marangoni forces which ultimately drive the flow field become weaker.

Near the end of the film, the surface velocity profile deviates from a straight line to
satisfy the x′ = 1 boundary condition. The magnitude of surface velocity right at the end
of the film x′ = 1 turns out to be a decreasing function of time (see the inset in Figure 7).

Profiles of surfactant surface concentration are presented in Figure 8. As anticipated
in the appendix, the surface concentration of surfactant is uniformly distributed along the
film except at positions near the Plateau border. The uniform concentration region does
seem to shrink in size between times t′′ = 0 and t′′ = 4 but then starts growing again.

We can rationalise this observation as follows. The non-uniform concentration region
near the Plateau border tends to invade the uniform region further away when there is
more surfactant flux entering the film from the Plateau border at x′ = 1 than entering
the uniform region slightly to the left of x′ = 1. Conversely the uniform region tends to
expel the non-uniform region back towards the Plateau border when the surfactant flux
entering the film from the Plateau border at x′ = 1 is less than that entering the uniform
region slightly further to the left.

The magnitude of the surfactant flux is the product Γ′|u′′

s |, remembering u′′

s < 0 here.
As we move leftwards from x′ = 1, the value of Γ′ falls, and this tends to reduce the surfac-
tant flux, in turn giving a tendency for the non-uniform concentration region to grow and
the uniform region to shrink. Counterbalancing this, again moving leftwards starting from
x′ = 1, the magnitude of |u′′

s | grows moving across the non-uniform concentration region
towards the uniform one, tending to increase the surfactant flux: this favours shrinkage
of the non-uniform region at the expense of growth of the uniform one. Concentration
gradients in the non-uniform region must sharpen as the region itself shrinks1.

When the non-uniform concentration region is highly compact, the change in |u′′

s | is
negligible moving leftward from x′ = 1 across the non-uniform region. The dominant
tendency affecting the spatial variation of the surfactant flux is therefore that due to the
change in Γ′, and hence the non-uniform concentration region grows at the expense of the
uniform one. As the size of the non-uniform concentration region grows however, more
substantial changes in |u′′

s | can occur moving leftward from x′ = 1 across the non-uniform
region up to the edge of the uniform one. These changes in |u′′

s | now dominate the spatial
variation of the surfactant flux. This then permits the uniform concentration region to
grow at the expense of the non-uniform one.

6.2.2. Calculation of surfactant surface concentration via an integro-differential equation

We now describe results obtained via the integro-differential equation as detailed in
the appendix. As in Subsection 6.2.1, we have a′ = 0.1 and Γ′

F0 = 0.5, but we now have
formally δ′0µ̄ → ∞ instead of δ′0µ̄ = 5.4 as was the case for Figure 7–Figure 8.

1Note that this mechanism sustaining sharp gradients of surfactant concentration really only relies
on relative variations in u′

s exceeding relative variations in Γ′, and does not demand large δ′0µ̄s, even
though we have discussed it in that particular context. An analogous mechanism could also be active in
the case of small δ′0µ̄s, as the sharpness of the surfactant concentration gradients near x′ = 1 in Figure 4
(compared to Figure 5) indeed suggests.
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Integro-differential equation surfactant concentration profiles results are presented in
Figure 9. They are remarkably similar to those of Figure 8 even though one set of results
(finite difference) was determined for δ′0µ̄s = 5.4 and the other set (integro-differential
equation) formally for δ′0µ̄s → ∞. This close similarity is also reflected in the spatially-
averaged surfactant surface concentration plotted vs time in Figure 10. To quantify the
differences in the spatially-averaged data between the finite δ′0µ̄s cases compared to the
case where δ′0µ̄s → ∞, we evaluated the root mean square difference of the spatially-
averaged data between times t′′ = 0 and t′′ = 20. This root mean square difference was
0.0013 for δ′0µ̄s = 5.4, rising to 0.0031 for δ′0µ̄s = 2.7 and to 0.0168 for δ′0µ̄s = 0.54.

6.2.3. Comparison with approximate analytic solution

Using the assumption of near uniform surfactant surface concentration over (almost
all of) the film, the evolution of surfactant surface concentration in the uniform region
can be predicted using equation (A.10) given in the appendix.

In Figure 11, predictions from equation (A.10) are compared with the finite difference
and integro-differential equation computations. In this figure, the data is only presented
up to two units of time to show the agreement of the results of the three methods for calcu-
lation of Γ′ at x′ = 0. At very early times equation (A.10) agrees with the finite difference
and/or integro-differential equation results. At later time, the predictions obtained using
equation (A.10) deviate from the two other methods. This is because equation (A.10)
assumes an arbitrarily abrupt jump in surfactant surface concentration at the end of the
film, whereas in reality the concentration changes over a thin but finite region. Note that
according to the numerical predictions the growth rate of surfactant surface concentration
at x′ = 0 increases over time as the region where the profile of Γ′ vs x′ departs from uni-
formity grows, and this must be associated with increases in the magnitude of the surface
strain rate |∂u′′

s/∂x
′| in those parts of the domain where Γ′ remains uniform.

6.2.4. Comparison of large and small surface viscosity cases

Our data for large δ′0µ̄s have been expressed in terms a rescaled time t′′ instead of t′.
Given that t′ = δ′0µ̄s t

′′, clearly our large δ′0µ̄s data consider time scales much longer than
those studied with a smaller surface viscosity parameter. To effect a comparison between
the small and large δ′0µ̄s data, we convert the latter back into the original t′ scaling. The
result for spatially-averaged surfactant surface concentration is presented in Figure 12. It
is clear that the rate of surfactant transport onto the film surface is much slower for large
surface viscosity compared to the small surface viscosity case.

Just how slowly this large δ′0µ̄s case evolves for the current set of parameter values can
be appreciated by referring to Figure 10 which indicates that the surfactant concentration
on the film has only proceeded about half way to equilibrium with the Plateau border even
by t′′ = 10 (or equivalently by t′ = 54 since δ′0µ̄s = 5.4 here). Remember from Section 4
that 1 unit of dimensionless time t′ corresponds to roughly 9 s (this is longer than the scale
0.134 s quoted in Table 1 because we are assuming a substantially smaller film thickness
as Section 4 explains). It follows that, in a foam fractionation column operated with
reflux, to equilibrate a high surface viscosity film with surfactant rich reflux material in
Plateau borders, we may need to ensure that the contact time between the film and the
Plateau borders is hundreds of seconds long2. Strategies for increasing this contact time

2In fact the reason that such a long time scale results here is that we have chosen a value of µ̄s =
8.86 × 104 which is 100 times bigger than the base case value quoted in Table 1. Each unit of rescaled
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(or equivalently for increasing the film residence time in the fractionation column) could
be to increase the column height and/or operate at a lower air flow rate.

6.3. Effect of varying film length

Changing the film length (correlating with a change in bubble size) affects the char-
acteristic time scale for moving surfactant onto the film. A shorter film has a shorter
characteristic time, given (in dimensional form) by L2µ/(Gδ0) as per Table 1.

In the limit δ′0µ̄s ≪ 1 at least, being the limit for which the characteristic time scale
L2µ/(Gδ0) is relevant, a decrease in L should lead to a very substantial decrease in
(dimensional) time to achieve surfactant mass transfer. Not only do the Marangoni forces
become stronger with decreasing L, but also the distance over which surfactant needs
to travel onto the film is less. Although the mass transfer time scale can be reduced
significantly by reducing the film length, in the small δ′0µ̄s limit it is already comparatively
short compared to other time scales of interest, e.g. residence time of foam films in the
fractionation column [19]. Therefore, there is unlikely to be any requirement to reduce
it further. Reducing bubble size may have other beneficial effects for foam fractionation
though, e.g. increasing specific surface area, and thereby increasing the total amount of
adsorbed surfactant present in the fractionation column.

When δ′0µ̄s ≫ 1, the characteristic time scale changes (see Subsection 2.5) to µs/G
(in dimensional form). This is independent of the film length. In other words, for a
decrease in film length L, surface viscosity placing more limitations on surface motion on
short film, is offset (as far as evolution of surfactant concentration is concerned) by the
shorter distance over which surfactant must travel. The only residual effect is from the
parameter a′ increasing as L decreases (which should give more rapid transfer – constraints
on surfactant motion imposed by the Plateau border are less relevant as the film shrinks
relative to the Plateau border). This then corresponds to the case of a wetter foam.

In this study the result of calculation using a shorter film (L = 2×10−3 m, correspond-
ing to a′ = 0.25) is compared with that using a longer film (L = 5 × 10−3m, the value
of L contemplated in Table 1, corresponding to a′ = 0.1). Profiles of surfactant surface
concentration for a film with L = 2×10−3m are presented in Figure 13 for various values
of t′′ = Gt/µs. These have been computed with the integro-differential equation approach
(formally δ′0µ̄s → ∞) so that the parameter δ′0µ̄s has ceased to play any role whatsoever,
and the only effect of changing film length L is the residual effect of changing a′.

It is shown that at any time t′′, the surfactant surface concentration obtained in the
calculation using a shorter film in Figure 13 is larger than that obtained using a longer
film given in Figure 9. For further comparison, the spatially-averaged surfactant surface
concentration for the short film (L = 2× 10−3m) is compared with that for a longer film
(L = 5 × 10−3m). Results are presented in Figure 14. Again it is apparent that for a
shorter film the rate of surfactant accumulation is faster than that for a longer film.

When determining time scales for mass transfer, potentially even more important than
introducing high surface viscosities and/or varying film length, is considering different
possible film thicknesses. The nominal time scale for mass transfer 0.134 s quoted in
Table 1 (neglecting surface viscosity and taking L = 5× 10−3m) assumed the particular
half film thickness quoted in that table namely δ0 = 20 × 10−6 m (or equivalently δ′0 =
4× 10−3 quoted in Table 2). The much smaller value of half film thickness actually used

dimensionless time t′′ (and we are interested in at least 10 such units) corresponds to a physical time
µs/G or equivalently µ̄sµL/G, where according to Table 1, µL/G = 5.3× 10−4 s.
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in our calculations (δ′0 = 6×10−5) implies a substantially longer characteristic time scale,
on the order of 9 s as noted in Section 4. A further reduction of half film thickness
(by another order of magnitude down to the half thickness of a common black film δcb
quoted in Table 1) implies yet another order of magnitude increase in the mass transfer
time scale. Ironically this increased time scale is associated with lesser importance of
surface viscosity (as this depends on the parameter δ′0µ̄s which decreases with falling
film thickness). Knowledge of film drainage rates which govern film thicknesses is very
important for determining the rate of mass transfer.

What is counterintuitive here is that increasing surface viscosity at a given film thick-
ness leads to very long mass transfer times (as Subsection 6.2.4 indicates). However
reducing film thickness at fixed surface viscosity, also increases the mass transfer time,
even though it diminishes the relative importance that surface viscosity plays.

7. Conclusions

Simulation of surfactant transport onto a foam film in the presence of surface viscous
stress has been carried out. The simulation describes phenomena occurring during the
process of foam fractionation with reflux being used to purify a surfactant, and in par-
ticular how those phenomena are affected by the interfacial rheology of the surfactant.
The foam film surface is assumed to be viscoelastic and to be characterised by a Gibbs
elasticity and a surface viscosity parameter, both treated crudely as being independent of
surfactant surface concentration.

The base case parameter set for the simulation was taken from experimental data
reported in the literature using the protein bovine serum albumin (BSA) together with
cosurfactant propylene glycol alginate (PGA). Reflecting uncertainty in possible parame-
ter values, the parameter set we actually explored varied widely about the base case. The
simulation computes via finite differences the surface velocity distribution in the presence
of surface viscous stress. In order to determine the surface velocities, an approximation
was used, whereby the Plateau border was ‘uncurled’ onto a straight line, and the surface
velocity on the border itself was assumed to vary linearly with distance from the sym-
metry point of the border, but with non-linear variation permitted on the adjacent film.
The surface velocities advect surfactant, and cause the surface concentration (or surface
excess) of surfactant to evolve, and this was also computed using a material point method.

The evolution of the system was affected by the surface viscosity represented in the
form of dimensionless parameter δ′0µ̄s.

In computations with δ′0µ̄s ≪ 1, velocity profiles are initially quite sharply peaked, but
at a later time, the profiles of surface velocity are less sharp since the surfactant surface
concentration spreads out more evenly on the film surface, which results in more spread
out but weaker Marangoni stress. At any given time, the surfactant surface concentration
in the presence of surface viscosity is lower than that without surface viscosity. The rate
of surfactant transport is thereby affected by the surface viscosity parameter.

For a large surface viscosity, δ′0µ̄s ≫ 1, and in the special case where surfactant
concentration is nearly uniform along the film, the surface velocity profile is proportional
to the distance from the centre of the film except at positions near the Plateau border,
where the velocity field needs to adjust to satisfy the boundary condition at the end of
film. As a consequence, the surfactant surface concentration remains distributed almost
evenly at positions far from the Plateau border. In the large δ′0µ̄s limit, the profile
of surfactant surface concentration can also be simulated using an integro-differential
equation. Simulation results using the integro-differential equation agree with those using
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the finite difference method. It is found that the velocity scale is greatly slowed down in
the high surface viscosity limit (scaling now inversely with the surface viscosity) and the
time scale for evolution of the surfactant concentration is correspondingly increased.

Finally when a shorter film length is applied in the calculation, the characteristic time
scale for surfactant transport is likewise shorter.

We would expect the trends identified above to be reflected in the rate of enrich-
ment seen in a fractionation column operated with reflux, e.g. slower enrichment with
higher surface viscosity, slower enrichment in a very dry foams, but faster enrichment
with smaller bubbles. Foam film thickness is another important factor determining the
mass transfer rate associated with reflux-induced Marangoni flow. Ironically reducing film
thickness reduces the relative importance of surface viscosity, but increases the time scale
for mass transfer. Computing these mass transfer time scales is important for designing
fractionation processes: the residence time of foam films in the fractionation column must
be sufficient to achieve the required transfer. Indeed an experimental study measuring
the effect of foam film residence time on the performance of a foam fractionation column
operated with reflux for a comparatively high surface viscosity surfactant seems to be a
promising avenue for future research.
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Appendix A. Velocity fields for instantaneous distributions of Γ′

In the main text we computed the fields u′

s and Γ′ coupled together. Specifically given
an instantaneous distribution of Γ′ vs x′ one can compute u′

s vs x′, and thereby how Γ′

vs x′ evolves with time. Generally speaking, the field Γ′ vs x′ can be quite complex, and
this leads to a complex field for u′

s vs x
′ and hence a complex evolution of Γ′.

If however one assumes a comparatively simple field for Γ′ vs x′ at a particular instant
in time, it becomes possible to solve for u′

s vs x′ analytically. These analytic solutions
are of course only valid at one instant in time (because Γ′ vs x′ is itself evolving) but
nonetheless useful insights can be gained from them. We treat the small δ′0µ̄s and large
δ′0µ̄s cases separately.

Appendix A.1. Small δ′0µ̄s case

The particular instant in time that we will consider is time t′ = 0, for which we
know that Γ′ = Γ′

F0 for x′ < 1 and Γ′ = 1 for 1 < x′ ≤ 1 + π
6
a′. Here recall Γ′

F0 is
a constant smaller than unity, so we have low surfactant concentration on the film, and
higher surfactant concentration on the Plateau border.

It is useful to define a quantity a′crit as

a′crit =
6

π

√

δ′0µ̄s

3
. (A.1)

The physical interpretation of this quantity will be given shortly.
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The surface velocity for x′ ≤ 1 can be described by the following equation:

u′

s = −
ln(1/Γ′

F0)

3
√

δ′0µ̄s/3 (1 + a′crit/a
′)
exp

(

−1 + x′

√

δ′0µ̄s/3

)

. (A.2)

Since δ′0µ̄s ≪ 1 this solution clearly has the character of a boundary layer, the length
scale of the boundary layer being

√

δ′0µ̄s/3 (which is indeed an order (δ′0µ̄s)
1/2 quantity

as anticipated in the main text): once x′ moves a distance of
√

δ′0µ̄s/3 away from x′ = 1,
it is clear that the magnitude of u′

s decays, and in fact when δ′0µ̄s ≪ 1, the boundary
condition that u′

s = 0 at x′ = 0 is satisfied with only negligible, exponentially small, error.
In effect the solution already decays over such a short distance to the left of x′ = 1 that,
with negligible error, we can push the u′

s = 0 boundary condition from x′ = 0 all the way
to x′ → −∞.

Moreover for any x′ < 1, our solution (A.2) clearly satisfies the governing equation (4)
(because by assumption Γ′ is uniform with x′ when x′ < 1). Furthermore it can be verified
that boundary condition (9) is satisfied. As x′ → 1 from below, the value of ∂u′

s/∂x
′ can

be obtained readily from equation (A.2). At x′ = 1 however, equation (4) requires that
there be an abrupt change in in ∂u′

s/∂x
′, itself equal to the imposed abrupt change or

‘jump’ in ln Γ′ divided by δ′0µ̄s. Hence the value of ∂u′

s/∂x
′ immediately to the right of

x′ = 1 can be deduced, and verification of the boundary condition (9) follows.
Note an important property of equation (A.2). When a′ ≫ a′crit (i.e. when π

6
a′ ≫

√

δ′0µ̄s/3), u
′

s at x
′ = 1 approaches a value −1

3
(δ′0µ̄s/3)

−1/2 ln(1/Γ′

F0) which is insensitive
to the value of a′. The π

6
a′ distance between the end of the film and the symmetry point

of the Plateau border is now so large compared to the characteristic decay distance of the
velocity boundary layer (

√

δ′0µ̄s/3 or equivalently π
6
a′crit) that in effect the velocity field is

unconstrained by the presence of the Plateau border symmetry point. When a′ ≪ a′crit on
the other hand, the magnitude of u′

s is greatly reduced, becoming a factor a′/a′crit smaller
than the aforementioned unconstrained velocity value. This greatly reduced velocity then
leads to a reduced flux of surfactant from the Plateau border onto the film. Thus we deduce
the following physical interpretation of the parameter a′crit, namely a′crit is a critical value
of the parameter a′, such that for a′ ≫ a′crit the velocity field is unconstrained by the
requirement for velocity to fall to zero at the Plateau border symmetry point, whereas if
a′ ≪ a′crit the velocity field is strongly constrained by this requirement.

This completes our discussion of the case of small δ′0µ̄s. The case of large δ
′

0µ̄s behaves
very differently as we shall see in the next subsection.

Appendix A.2. Large δ′0µ̄s case

In the case of large δ′0µ̄s it is convenient to rescale the velocity, defining u′′

s = δ′0µ̄s u
′

s.
The velocity field is now governed by equation (7), the solution of which is

u′′

s = −

[

∫ x′

0

ln

(

1

Γ′

)

dx′ −
x′

1 + a′π/6

∫ 1

0

ln

(

1

Γ′

)

dx′

]

. (A.3)

It is easy to check by direct substitution confirms that this satisfies equations (7) and (9).
Note that equation (A.3) is generically true in the limit δ′0µ̄s ≫ 1 regardless of how Γ′

varies with x′. Using (A.3), the spatio-temporal evolution of Γ′ can be computed (via the
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surfactant conservation equation)

∂Γ′

∂t′′
=

[

∫ x′

0

ln

(

1

Γ′

)

dx′ −
x′

1 + a′π/6

∫ 1

0

ln

(

1

Γ′

)

dx′

]

∂Γ′

∂x′

+

[

ln

(

1

Γ′

)

−
1

1 + a′π/6

∫ 1

0

ln

(

1

Γ′

)

dx′

]

Γ′. (A.4)

This is the integro-differential equation to which we refer extensively in the main text,
and which we solve in Subsection 6.2.2.

Note however that owing to equation (A.3) we can already deduce quite a lot about
the velocity field u′

s even without solving equation (A.4) in detail. For example for x′ = 1
we obtain the following equation:

u′′

s |x′=1 = −
a′π/6

1 + a′π/6

∫ 1

0

ln

(

1

Γ′

)

dx′, (A.5)

this velocity u′′

s |x′=1 then governing the surfactant flux from Plateau border to film. Clearly
the closer Γ′ is to unity, the nearer u′′

s |x′=1 becomes to zero.
Yet more deductions about the velocity field can be made by employing a simplifica-

tion, namely assuming uniform surfactant surface concentration away from the end of the
film (x′ = 1). This is dealt with in the next subsection.

Appendix A.3. Surface velocity: Uniform surfactant concentration away from x′ = 1

Suppose that the surfactant concentration field Γ′ is uniform with a value Γ′

0 except
possibly in a thin region near x′ = 1. This is certainly true in the initial state at early
times (and in fact Γ′

0 = Γ′

F0 in that case). However the data in Figure 8 and Figure 9
indicate it remains roughly true even as time proceeds, although Γ′

0 varies with time.
Equation (A.3) then indicates that to a good approximation

u′′

s ≈ −
x′a′π/6

1 + a′π/6
ln

(

1

Γ′

0

)

. (A.6)

Therefore the derivative of equation (A.6) can be presented as follows:

∂u′′

s

∂x′
≈ −

a′π/6

1 + a′π/6
ln

(

1

Γ′

0

)

. (A.7)

This ∂u′′

s/∂x
′ applies for the overwhelming majority of the length of the film. However

in the thin region near x′ = 1 the value of ∂u′′

s/∂x
′ is rather different. In fact at x′ = 1

equation (9) and equation (A.6) imply the following equation:

∂u′′

s

∂x′

∣

∣

∣

∣

x′=1

≈
1

1 + a′π/6
ln

(

1

Γ′

0

)

. (A.8)

It is shown that outside the thin region near x′ = 1, ∂u′′

s/∂x
′ is a factor of a′π/6 smaller

than (and of opposite sign to) ∂u′′

s/∂x
′ at x′ = 1. Therefore, there is an obvious asymmetry

in the graph of u′′

s vs x′ with a gradual slope outside the thin region and a sharper slope
inside the thin region. This asymmetry is clearly seen in Figure 7. Note also that u′′

s is
an order a′ quantity, or equivalently (converting back to the original scaling) u′

s is order
a′/(δ′0µ̄s). Thus, the surface velocity u′

s can be decreased not only by increasing δ′0µ̄s but
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also by decreasing a′. In other words, the drier the foam (i.e. smaller a′), the lower the
velocity at the edge of the film, and the less mass transfer from Plateau border to film.

Appendix A.4. Time evolution of (near uniform) surfactant concentration

In the case where Γ′ is close to Γ′

0 (apart from a very thin region near x′ = 1), the fact
that equations (A.6)–(A.7) suggest a near uniform strain rate in the film has important
implications for mass transfer. Specifically the near uniform strain rate drives a near
uniform rate of change of surfactant concentration, in turn ensuring that the surfactant
concentration field (whilst changing in time) remains close to spatially uniform (being
then consistent with the assumptions under which equations (A.6)–(A.7) were derived).

An ordinary differential equation for the time evolution of Γ′

0 can be derived as follows:

∂Γ′

0

∂t′′
≈

a′π/6

1 + a′π/6
ln

(

1

Γ′

0

)

Γ′

0. (A.9)

Integration of equation (A.9) results in the following equation:

Γ′

0 ≈ exp

(

− ln

(

1

Γ′

F0

)

exp

(

−
t′′a′π/6

1 + a′π/6

))

, (A.10)

where we have used the condition that Γ′

0 = Γ′

F0 as t′′ → 0.
Equation (A.10) gives the evolution of surfactant surface concentration outside a thin

region near x′ = 1. It is clear that Γ′

0 → Γ′

F0 if t′′ ≪ 1/(a′π/6), however Γ′

0 → 1
if t′′ ≫ 1/(a′π/6). This prediction for Γ′

0 relies of course on the assumption that the
surfactant surface concentration is nearly spatially uniform.

There is of course a thin region near x′ = 1 where Γ′ deviates from the spatially uniform
value Γ′

0, since necessarily Γ′ → 1 at x′ = 1. This non-uniform concentration region grows
with time at least for small t′′ (as Figure 8 and Figure 9 make apparent). This leads

to a reduction in the value of the term
∫ 1

0
ln(1/Γ′) dx′ within equation (A.3). The term

∫ x′

0
ln(1/Γ′) dx′ within that same equation is however unaffected provided x′ is chosen

within the domain where Γ′ is spatially uniform with the value Γ′

0. The implication
is that the magnitude of ∂u′′

s/∂x
′ (which is itself uniform within the spatially uniform

concentration region) grows as the spatially non-uniform region grows. This higher strain
rate in turn causes Γ′

0 to grow more quickly than equations (A.9)–(A.10) predict, and
this is evident in Figure 11. The velocity difference across the spatially non-uniform
region (which is zero when the spatially non-uniform region is arbitrarily thin) must also
grow as the spatially non-uniform region grows and the spatially uniform region shrinks.
Increasing this velocity difference may however arrest the shrinkage of the spatially non-
uniform region (see Subsection 6.2.1).
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Table 1: Parameters for simulation of surfactant transport onto a foam film incorporating surface viscosity
taken from [40]. The value of surface viscosity µs as well as the error bar is the one observed by [40].
Some other experiments (e.g. [49]) suggest much smaller values of µs than have been reported by [40].
Depending upon the extent of film drainage, the half film thickness δ0 can also be chosen much smaller
than the value quoted (and many of our calculations do in fact select a substantially smaller value).
Note that the characteristic Marangoni time scale differs somewhat from that reported by [19] as we are
assuming a different surfactant with a different bulk liquid viscosity and different Gibbs parameter [40].
Morever the characteristic Marangoni time scale is specific to the quoted half film thickness δ0. The time
scale is proportional to the reciprocal of δ0.

Parameters Symbol Value Unit
Characteristic ‘Marangoni’ time scale L2µ/(Gδ0) 0.134 s
(equivalent to one unit of dimensionless time)
Initial half film thickness δ0 20× 10−6 m
Half thickness of common black film δcb 15× 10−9 m
Half film length L 5× 10−3 m
Liquid viscosity µ 7× 10−3 Pa s
Surface viscosity µs 31± 12× 10−3 Pam s
Surfactant surface excess on the Plateau
border

ΓPb 3× 10−8 molm−2

Initial surfactant surface excess on the film ΓF0 1.5× 10−8 molm−2

Radius of curvature of the Plateau border a 5× 10−4 m
Surface tension on the Plateau border γPb 55× 10−3 Nm−1

Gibbs parameter G 65± 12× 10−3 Nm−1

24



Table 2: Base case dimensionless parameters for the simulation of surfactant onto a foam film incorpo-
rating surface viscosity. The values were determined based primarily on [40].

Parameters Symbol Definition Value
Dimensionless initial half film thickness δ′0 δ0/L 4× 10−3

Dimensionless half thickness of common
black film

δ′cb δcb/L 3× 10−6

Dimensionless radius of curvature of
Plateau border

a′ a/L 0.1

Dimensionless surface viscosity µ̄s µs/µL 8.86± 3.4× 102

Dimensionless initial surfactant surface excess Γ′

F0 ΓF0/ΓPb 0.5
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Table 3: Range of the dimensionless parameters used in the simulation of surfactant transport onto a
foam film incorporating surface viscosity. The value of δ′0 is set intermediate between the smallest possible
value (δ′cb = 3 × 10−6 quoted in Table 2) and the base case value δ′0 value (4 × 10−3 again quoted in
Table 2). The value of µ̄s and a′ are set at least as large as the base case values (which are µ̄s = 886 and
a′ = 0.1 respectively).

Parameters Symbol Range
Dimensionless initial half film thickness δ′0 6× 10−5

Dimensionless surface viscosity µ̄s 886–8.86× 10−4

Dimensionless viscosity parameter δ′0µ̄s 5.4× 10−2–5.4
Dimensionless radius of curvature of Plateau border a′ 0.10–0.25
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Figure 1: Two-dimensional slice of half of a foam film and an adjacent Plateau border. The film half
length is L and the half film thickness is δ0, the Plateau border length (measured along the border to its
symmetry point) is LPb, surface tensions are γPb and γ on the surface of the Plateau border and on the
surface of the film respectively, surface and bulk viscosity are µs and µ respectively, Gibbs elasticity on
the film is G, surface velocities are us(Pb) and us(film) on the surface of the Plateau border and on the
surface of the film respectively.
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Figure 2: Illustration of half of a film and an adjacent Plateau border. The half-length of the film (L′ in
dimensionless variables) is set to unity. The zoomed view shows the cross section of the Plateau border.
The total distance from the midpoint of the film to that of the Plateau border is L′ + L′

Pb ≡ 1 + a′π/6
where for the purpose of our model, we assume that the curved shape of the Plateau border surface can
be ‘uncurled’ onto a straight line.
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Figure 3: Evolution of surface velocity computed using δ′0µ̄s = 5.4× 10−2 (obtained from δ′0 = 6× 10−5

and µ̄s = 886), a′ = 0.1 and Γ′

F0 = 0.5. The computation was carried out using the finite difference
method. Labels on curves correspond to the time t′. At early times, the only significant surface velocities
are seen in the region near the end of the film. At later times, the velocity profiles are more spread out,
but the magnitude of the peak velocity is less.
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Figure 4: Evolution of surfactant surface concentration computed using δ′0µ̄s = 5.4×10−2 (obtained from
δ′0 = 6× 10−5 and µ̄s = 886), a′ = 0.1 and Γ′

F0 = 0.5. The computation was carried out using the finite
difference/material point method. Labels on curves correspond to the time t′. Surfactant accumulates
on the film surface over time.
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Figure 5: Evolution of surfactant surface concentration in the absence of surface viscosity simulated using
δ′0 = 6 × 10−5, µ̄s = 0, a′ = 0.1 and Γ′

F0 = 0.5. Labels on curves correspond to the time t′. Surfactant
accumulates on the film surface over time more slowly in Figure 4 than it does here, owing to the surface
viscosity affecting the results in Figure 4.
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Figure 6: Comparison of the spatially-averaged surfactant surface concentration over time calculated
without surface viscosity (δ′0µ̄s = 0, δ′0 = 6× 10−5, µ̄s = 0) and with surface viscosity (δ′0µ̄s = 5.4× 10−2,
δ′0 = 6 × 10−5, µ̄s = 886). The computation used a′ = 0.1 and Γ′

F0 = 0.5. The computation was carried
out using the finite difference method. Surface viscosity slows down the accumulation of surfactant.
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Figure 7: Evolution of surface velocity calculated using δ′0µ̄s = 5.4 (obtained from δ′0 = 6 × 10−5 and
µ̄s = 8.86 × 104), a′ = 0.1 and Γ′

F0 = 0.5. The computation was carried out using the finite difference
method. Labels on curves are the rescaled dimensionless time t′′. The inset is zoomed in around x′ = 1.
The velocity profiles show a linear variation with x′ over much of the domain, but an abrupt deviation
from linearity near x′ = 1.
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Figure 8: Evolution of surfactant surface concentration calculated using parameters δ′0µ̄s = 5.4 (obtained
from δ′0 = 6 × 10−5 and µ̄s = 8.86 × 104), a′ = 0.1 and Γ′

F0 = 0.5. The computation was carried out
using the finite difference/material point method. Labels on curves are the rescaled dimensionless time
t′′. The profiles show a uniform concentration region over much of the domain with an abrupt change in
concentration at the end of the domain.
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Figure 9: Evolution of surfactant surface concentration calculated with the integro-differential equation
(as described in the appendix, and applicable for δ′0µ̄s → ∞), using parameters a′ = 0.1 and Γ′

F0 = 0.5.
Labels on curves are the rescaled dimensionless time t′′. Close agreement is seen between the integro-
differential equation results here (δ′0µ̄s → ∞) and the finite difference results (Figure 8 with δ′0µ̄s = 5.4).
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Figure 10: Comparison of the spatially-averaged surfactant surface concentration over time calculated
using the integro-differential equation (δ′0µ̄s → ∞) and the finite difference/material point method (δ′0 =
6 × 10−5, µ̄s = 8.86 × 104, δ′0µ̄s = 5.4) with additional data for δ′0µ̄s = 2.7 and 0.54 also included
for comparison. All computations had a′ = 0.1 and Γ′

F0 = 0.5. Data for δ′0µ̄s → ∞, δ′0µ̄s = 5.4 and
δ′0µ̄s = 2.7 are difficult to distinguish on the scale of the plot. Differences start to appear as δ′0µ̄s decreases,
e.g. for the case δ′0µ̄s = 0.54.
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Figure 11: Comparison of the surfactant surface concentration (evaluated at x′ = 0) vs time predicted
using equation (A.10) (an analytic approximation assuming a near uniform surfactant distribution) and
calculated using the finite difference/material point method (δ′0µ̄s = 5.4, δ′0 = 6× 10−5, µ̄s = 8.86× 104)
and the integro-differential equation (δ′0µ̄s → ∞). The computations had a′ = 0.1 and Γ′

F0 = 0.5. The
predictions of equation (A.10) capture the qualitative behaviour.
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Figure 12: Comparison of the spatially-averaged surfactant surface concentration over time calculated in
the absence of surface viscosity and in the presence of surface viscosity (δ′0µ̄s = 0–5.4, µ̄s = 0–8.86×104).
The simulation used δ′0 = 6 × 10−5, a′ = 0.1 and Γ′

F0 = 0.5. Computations were carried out using the
finite difference/material point method. High surface viscosity severely limits the rate at which surfactant
accumulates on the film.
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Figure 13: Evolution of surfactant surface concentration simulated using the integro-differential equation
as described in the appendix (applicable in the limit δ′0µ̄s → ∞) using parameters a′ = 0.25 and Γ′

F0 = 0.5.
Labels on curves are the rescaled dimensionless time t′′. Evolution is more rapid here than in Figure 9,
owing to the larger a′ value used here.
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Figure 14: Comparison of the spatially-averaged surfactant surface concentration over time calculated us-
ing two different film lengths (i.e. two different a′). The computation used L = 2×10−3m, corresponding
to a′ = 0.25, and L = 5× 10−3m, corresponding to a′ = 0.1. In addition Γ′

F0 = 0.5. The computational
method used the integro-differential equation (applicable for δ′0µ̄s → ∞). Faster surfactant accumulation
is seen with smaller L, i.e. larger a′.

40


