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Abstract. In this paper, we present a stochastic particle algorithm
for the simulation of �ows of wall-con�ned gases with di¤use re�ection
boundary conditions. Based on the theoretical observation that the
change in location of the particles consists of a deterministic part and a
Wiener process if the time scale is much larger than the relaxation time,
a new estimate for the �rst hitting time at the boundary is obtained.
This estimate facilitates the construction of an algorithm with large
time steps for wall-con�ned �ows. Numerical simulations verify that
the proposed algorithm reproduces the correct boundary behaviour.
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1. Introduction

At present, the most widely used particle method for simulating gas �ows
is the direct simulation Monte Carlo (DSMC) method [2] proposed by Bird
in the 1960s. The fundamental idea behind the DSMC method is to track
a large number of representative molecules, with their motions and inter-
molecular collisions assumed uncoupled. Molecular motions are modeled
deterministically according to the Newtonian equations of motion, while
molecular collisions are modeled statistically by selecting collision pairs in
cells. To correctly reproduce the transport properties of gases, the sizes
of the cells within which molecular collision partners are selected must not
exceed the mean free path of molecules, and the time steps should be less
than the mean collision time [1],[4]. Therefore, the DSMC method becomes
very expensive for simulation of small Knudsen number �ows.
In contrast, the particle Fokker-Planck model uses a Langevin equation

to describe a continuous stochastic process in velocity space. The velocities
of each particle are separately updated according to the drag force and
stochastic force, and no individual particle collisions need to be considered.
This allows the sizes of cells and time steps to be chosen independently of
the mean free path and mean collision time, respectively. Accordingly, for
the simulation of small Knudsen number �ows, the computational e¢ ciency
is much higher than for the DSMC method. A stochastic particle algorithm
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for solving the particle Fokker-Planck model was proposed by Jenny et al
[11]. Since then, great progress has been made and the applications have
been extended to a variety of gas �ows [3], [6], [7].
A general review of Langevin simulation of gas �ows was presented in

[12], where two critical issues of such simulations are discussed. The �rst
issue is related to the transport properties of Langevin models. Using the
Green-Kubo formula, Zhang et al. [13] obtained analytical expressions for
the transport coe¢ cients, including the di¤usion, viscosity and thermal con-
ductivity coe¢ cients. It was shown that the simple Langevin model predicts
a false Prandtl number for gas molecules. This problem could, however, be
solved using the cubic nonlinear Langevin model proposed by Gorji et al. [7]
and the Langevin acceleration model proposed by Heinz [9], [10].
The second issue concerns boundary conditions. In the absence of bound-

ary walls, the Langevin model proposed in [11] is statistically exact for
constant macroscopic velocity and energy for any size of the time steps. If a
boundary wall is present, some particles will, in each calculating time step,
hit the wall during the stochastic di¤usion process. To employ boundary
conditions, it is very crucial to determine as exactly as possible when the
particles hit the boundary. In [11], a simple linear interpolation method
was used to obtain the hitting time. However, this approximation is only
accurate in the limit of very small time steps. According to the analysis
of the Langevin equation carried out in the article at hand, two distinct
characteristics exist in the short time and long time limits, respectively. In
the short time limit, the movement of the particles is free, and hence the
mean displacement is linear in time. In this case, it is reasonable to use
linear interpolation to determine the hitting time. In the long time limit, on
the other hand, the movement of the particles is a di¤usion process and the
mean displacement is proportional to the square root of time. Therefore,
linear interpolation is no longer applicable for large time steps. As shown
in Section 4, the scheme of [11] with linear interpolation predicts a higher
density close to the wall. This e¤ect is due to linear interpolation overesti-
mating the hitting time and, consequently, underestimating the remaining
time after the boundary hit. This implies that the simulated particles do
not have su¢ cient time to move away from the boundary and, thus, more
particles are found close to the wall. In this article we address the problem
of determining the hitting time accurately, as this is the main remaining
obtacle for constructing an e¢ cient Langevin model with large time steps
for wall-con�ned �ows.
The DSMC method is very e¢ cient for �ows with large Knudsen number

(Kn > 0:1), and the particle Fokker-Planck model proposed in [7] and [11] is
e¢ cient for �ows with moderate Knudsen number (0:01 < Kn < 0:1). Our
aim is to develop an e¢ cient particle Fokker-Planck model for �ows with
small Knudsen number (Kn < 0:01) using large time steps. In this article, we
consider one-dimensional, wall-con�ned �ows with zero macroscopic velocity
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and no external forces and we postpone the more general case of multi-
dimensional �ows with nonzero macroscopic velocity to a future article.
This article is arranged as follows. In Section 2, we present some basic

mathematical results for the Langevin model and derive an estimate for the
�rst hitting time of the boundary in the limit of large time steps. In Section
3, we present a new stochastic particle Fokker-Planck algorithm using the
�rst hitting time estimate from Section 2. Simulation results for a particular
wall-con�ned �ow are demonstrated in Section 4 and some conclusions are
presented in Section 5.

2. Mathematical analysis of the stochastic model

In this section we provide a mathematical basis for the algorithm proposed
in this article. In the absence of a macroscopic velocity and external forces,
the solution to the Fokker-Planck equation can be transformed into the
equivalent Itō processes Xt and Mt satisfying

dXt = Mtdt;(2.1)

dMt = �1
�
Mtdt+

r
4es
3�
dWt;(2.2)

for t � 0, with initial conditions X0 = x and M0 = m, see for example [11].
Here � is the relaxation time, that is the average time between two particle
collisions, and es is the average kinetic energy of particles. The process Xt
can be interpreted as the position and the process Mt as the velocity of
a particle moving along the �ow. Using Itō calculus on Xt and Mt, it is
straightforward to verify that, given the location Xtn and velocity Mtn at
some time tn, the position and velocity evolves according to

Xtn+t = Xtn +Mtn�
�
1� e�t=�

�
(2.3)

+

r
4es�

3

Z t

0

�
1� e(s�t)=�

�
dWs;

Mtn+t = Mtne
�t=� +

r
4es
3�

Z t

0
e(s�t)=�dWs;(2.4)

for t > 0, in the absence of a macroscopic velocity. The correlations between
Xt and Mt conditioned on the history of the processes up to time tn are

E
h
(Xtn+t �Xtn)2 jFtn

i
(2.5)

= M2
tn�

2
�
1� e�t=�

�2
+
2es�

2

3

�
2t

�
�
�
3� e�t=�

��
1� e�t=�

��
;

(2.6) E
�
M2
tn+tjFtn

�
=M2

tne
�2t=� +

2es
3

�
1� e�2t=�

�
;
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and

E [(Xtn+t �Xtn)Mtn+tjFtn ] = M2
tn�e

�t=�
�
1� e�t=�

�
(2.7)

+
2es�

3

�
1� e�t=�

�2
;

as was previously stated in [11]. In this article, we consider wall-con�ned
�ows and we want the position process to satisfy Xtn+t 2 [L1; L2], for t > 0,
with di¤use re�ection at the boundaries. To accomplish this, we need to
determine if and when Xtn+t hits the boundary, and we do this, by �rst
investigating Xtn+t in the limits of very small and very large values of t,
respectively.
For t << � , a Taylor expansion of (2.5) in the variable t=� shows that the

location Xtn+t is normally distributed with mean Xtn +Mtnt and variance
4est

3=9� . If M2
tn is of the same order as es, which it should be in the mean

as we have E
�
M2
tn

�
= 2es=3, then the stochastic part is negligible compared

to the deterministic part and Xtn+t � Xtn +Mtnt. This corresponds to the
decoupling of the velocity and position updates for small time steps in the
numerical algorithm proposed in [6].
For t >> � , the exponential terms in (2.5) are insigni�cant. Note for

example that already for t � 4� the relative contribution of the exponential
terms to the variance of the location is of the order 10�2. Hence, for large
t, the location Xtn+t is normally distributed with mean Xtn +Mtn� and
variance 2es� (2t� 3�) =3. It is interesting to note here that the mean change
in location Xtn +Mtn� is independent of t and occurs on a time scale of size
� , whereas the stochastic change in location increases in time at the same
rate as for a Wiener process. For large t, we could hence model Xtn+t as

(2.8) Xtn+t = Xtn +Mtn� +

r
4es�

3
fWt�3�=2;

for some standard Wiener process fW .
2.1. First hitting times for Wiener processes. As we are interested in
the boundary behaviour ofXtn+t and we have seen above that for t >> � , the
process Xtn+t behaves like a Wiener process, we shall derive a few results
regarding hitting times for Wiener processes. Let W a

t denote a Wiener
process with variance �2 starting at location a > 0 at time zero. The �rst
hitting time T a of W a

t at zero is de�ned as T
a = inf ft > 0 :W a

t = 0g and
has the well-known density

(2.9) P (T a 2 dt) = ap
2��2t3

exp

�
� a2

2�2t

�
dt:

The Wiener process has independent increments so the joint density of T a

and W a
T , for T

a � T , is simply given by

(2.10) P (T a 2 dt;W a
T 2 db) = P (T a 2 dt)P

�
W 0
T�t 2 db

�
:
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Conditioning on the location of the Wiener process at time T , we obtain,
using the well-known density of a Wiener process with drift �,

P (T a 2 dtjW a
T = b)

=
P (T a 2 dt;W a

T 2 db)
P
�
W a
T 2 db

� =
P (T a 2 dt)P

�
W 0
T�t 2 db

�
P
�
W a
T 2 db

�
= a

s
T

2��2 (T � t) t3 exp
 
(a� b)2

2�2T
� a2

2�2t
� b2

2�2 (T � t)

!
dt:(2.11)

The probability that a Wiener process starting at a at time zero and ending
up at b at time T hits zero during the time interval [0; T ] is obtained by
integrating the conditional density P (T a 2 dtjW a

T = b) over [0; T ], that is

P (T a � T jW a
T = b)

=
a

�

r
T

2�
exp

 
(a� b)2

2�2T

!Z T

0

exp

�
� a2

2�2t
� b2

2�2 (T � t)

�
p
(T � t) t3

dt:(2.12)

Using Laplace transforms it is straightforward to show that, for positive a
and b,

(2.13)
Z T

0

exp

�
� a2

2�2t
� b2

2�2 (T � t)

�
p
(T � t) t3

dt =
�

a

r
2�

T
exp

 
�(a+ b)

2

2�2T

!
;

and hence, since the sign of b might be either positive or negative,

(2.14) P (T a � T jW a
T = b) =

8<: exp

�
� 2ab
�2T

�
; if b � 0

1; if b < 0

where the statement for b < 0 is obvious. This theoretical result is an
important ingredient in the algorithm below and we note that it has been
used before in numerical algorithms for re�ected and stopped stochastic
di¤erential equations, see for example [5].
To obtain an e¢ cient algorithm for the boundary behaviour of the sto-

chastic model, we need a good estimate of the hitting times at the boundary.
It is hard to sample hitting times directly from the density (2.11), but, fortu-
nately, we can obtain an analytical expression for the expected �rst hitting
time conditioned on the fact that the boundary is hit during [0; T ]. From
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(2.11) and (2.14), we obtain

E [T ajW a
T = b; T

a � T ]

=

Z T

0
tP [T a 2 dtjW a

T = b; T
a � T ] =

Z T

0
t
P (T a 2 dtjW a

T = b)

P
�
T a � T jW a

T = b
�

=
a

�

r
T

2�
exp

 
(a+ jbj)2

2�2T

!Z T

0

exp

�
� a2

2�2t
� b2

2�2 (T � t)

�
p
(T � t) t

dt:(2.15)

Using Laplace transforms it is straightforward to show that, for positive a
and b,

(2.16)
Z T

0

exp

�
� a2

2�2t
� b2

2�2 (T � t)

�
p
(T � t) t

dt = �erfc
�
a+ bp
2�2T

�
;

where erfc is the complementary error function. Hence
(2.17)

E [T ajW a
T = b; T

a � T ] = a

�

r
�T

2
exp

 
(a+ jbj)2

2�2T

!
erfc

�
a+ jbjp
2�2T

�
:

Note here that with the variables u = a=
p
2�2T and v = jbj =

p
2�2T , the

expected �rst hitting time can be compactly expressed as

(2.18) E [T ajW a
T = b; T

a � T ] = Tu
p
�erfcx (u+ v) ;

where erfcx is the scaled complementary error function. Since
p
�erfcx(x) <

1=x for all x > 0, the expected �rst hitting time is always smaller than
the hitting time obtained by using linear interpolation based on a and b.
Moreover,

p
�erfcx(x)! 1=x as x!1, so asymptotically the expected �rst

hitting time coincides with the hitting time obtained by linear interpolation.

2.2. First hitting times for the stochastic model. Equipped with the
results in Section 2.1, we are now ready to analyse the processXtn+t con�ned
to an interval [L1; L2]. The following arguments correspond to the case
L1 = 0 and L2 = 1, but can easily be generalized to any L1 and L2
satisfying L1 < L2. Consequently, the algorithm in Section 3 is stated in
the setting of general L1 and L2. In the following we let [tn; tn+1] denote a
time step whose length �tn := tn+1 � tn is of the order 10� .
We �rst investigate if Xtn+t < 0 for some t 2 [0; 4� ], that is for values

of t for which the large t approximation does not apply. Let " := 10�
p
es

so that ", according to (2.5), exceeds two and a half standard deviations of
Xtn+4� . If Xtn +Mtn� < ", there is a non-negligible probability that Xtn+t
has left the domain during the interval [0; 4� ]. In that case, we will not be
able to resolve the boundary behaviour with a single time step whose length
is signi�cantly larger than � . Instead, we can run a simulation with the
scheme of [6] with time steps signi�cantly smaller than � and investigate
if Xtn+t < 0 at the end of any of these smaller time steps. If so, we can
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use linear interpolation to estimate the exit time Te from the domain. The
simulation for t > Te is described at the end of this section.
If Xtn +Mtn� > ", then we simulate a value of

�
Xtn+1 ;Mtn+1

�
based on

the scheme of [11]. If Xtn+1 < 0, then we know with certainty that the
process has crossed the boundary. But also for Xtn+1 > 0, there is a non-
zero probability that the process has left the domain. Based on (2.8) and
(2.14), the probability that Xtn+t < 0 for some t 2 (0;�tn) is

(2.19) exp

�
�
3Xtn+1 (Xtn +Mtn�)

(2�tn � 3�) es�

�
:

Hence, using this probability, we can determine whether Xtn+t has hit the
boundary during the time step. If this is the case, we may use (2.18) to
calculate the following estimate of the hitting time

(2.20) Te = tn +
3�

2
+ T

xp
2�2T

p
�erfcx

�
x+ jyjp
2�2T

�
;

where x = Xtn +Mtn� , y = Xtn+1 , T = �tn � 3�=2 and � =
p
4es�=3.

Note that the term 3�=2 is added to the estimate of the �rst hitting time
to compensate that the change of location of Xt during a time interval of
length �tn is modelled by the change of location of a Wiener process during
a time interval of length �tn � 3�=2.
If the process has left the domain, either for small t or for large t, we now

have an estimate of the �rst exit time Te. At the exit time, we sample a new
velocityMTe from a truncated Maxwellian distribution, see [11]. We use the
scheme of [6] with small time steps to simulate the behaviour of the process
during the remainder [Te; tn+1] of the time step. If Xt < 0 at the end of
any of these smaller time steps, we use linear interpolation to determine the
�rst exit time T 0e, sample a new Maxwellian velocity and use the scheme of
[6] with small time steps to simulate the behaviour of the process during
the remainder [T 0e; tn+1] of the time step. This procedure may have to be
iterated a number of times.
To conclude this section, we discuss extensions to other types of re�ecting

boundary conditions. For specular re�ection, one can simply use the algo-
rithm of [11] with large time steps with the following correction. If Xtn+1 is
found outside the domain, it is orthogonally re�ected into the domain and
the sign of the velocity is altered. An extension to Maxwell boundary con-
ditions is straightforward by combining specular and di¤use re�ection with
an proper accommodation coe¢ cient.

3. Algorithm

In this section we describe the algorithm for generating the solution to
(2.1)-(2.2) con�ned to an interval [L1; L2] with di¤use re�ection at the
boundary. Let the length of the time step be �tn = 10� and let � , es,
tn, Xtn and Mtn be given. Let N be an integer with default value 200. We
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assume that L2 � L1 >> 10�
q

4
3es, so that the probability that a particle

travels from one boundary to the other in only one time step is insigni�cant
(see step 5 below). Note that we have used Xtn , Mtn and �tn as variables
in the pseudocode below and their values may change during the execution
of the code.

(1) If Xtn +Mtn� > L1 + 10�
p
es and Xtn +Mtn� < L2 � 10�

p
es, go

to (3). Else let t (k) = tn + k�tn=N and go to (2).
(2) For k = 1 : N , generate Xt(k) and Mt(k) based on Xt(k�1) and

Mt(k�1) using the scheme of [6] with time step �tn=N . If Xt(k) < L1
for some k 2 f1; :::; Ng, let

Te = tn +
�tn
N

�
k +

Xt(k) � L1
Xt(k�1) �Xt(k)

�
;

and go to (8). If Xt(k) > L2 for some k 2 f1; :::; Ng, let

Te = tn +
�tn
N

�
k +

L2 �Xt(k)
Xt(k) �Xt(k�1)

�
;

and go to (9). Else go to (11)
(3) Generate Xtn+1 and Mtn+1 based on Xtn and Mtn using the scheme

of [11] with time step �tn.
(4) If Xtn+1 < L1, go to (6). If Xtn+1 > L2, go to (7). Else go to (5).
(5) Generate a uniformly distributed random variable V on [0; 1]. If

V < exp

 
�
3
�
Xtn+1 � L1

�
(Xtn +Mtn� � L1)

(2�tn � 3�) es�

!
;

go to (6). Else if

V < exp

 
�
3
�
L2 �Xtn+1

�
(L2 �Xtn �Mtn�)

(2�tn � 3�) es�

!
go to (7). Else go to (11).

(6) Let

Te = tn +
3�

2
+ T

xp
2�2T

p
�erfcx

�
x+ jyjp
2�2T

�
;

with x = Xtn +Mtn� � L1, y = Xtn+1 � L1, T = �tn � 3�=2 and
� =

p
4es�=3. Go to (8)

(7) Let

Te = tn +
3�

2
+ T

xp
2�2T

p
�erfcx

�
x+ jyjp
2�2T

�
;

with x = L2 � Xtn �Mtn� , y = L2 � Xtn+1 , T = �tn � 3�=2 and
� =

p
4es�=3. Go to (9)

(8) Generate MTe > 0 from a Maxwellian distribution and go to (10).
(9) Generate MTe < 0 from a Maxwellian distribution and go to (10).
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(10) Let l be the smallest integer being greater than or equal to the
quiotient N (tn+1 � Te) =�tn, let t (k) = Te+ k (tn+1 � Te) =l, de�ne
Xt(0) = L1 and Mt(0) =MTe . For k = 1 : l, generate Xt(k) and Mt(k)

based on Xt(k�1) and Mt(k�1) using the scheme of [6] with time step
(tn+1 � Te) =l. If Xt(k) < L1 for some k 2 f1; :::; lg, let

T 0e = Te +
tn+1 � Te

l

�
k +

Xt(k) � L1
Xt(k�1) �Xt(k)

�
;

let Te = T 0e and go to (8). If Xt(k) > L2 for some k 2 f1; :::; lg, let

T 0e = Te +
tn+1 � Te

l

�
k +

L2 �Xt(k)
Xt(k) �Xt(k�1)

�
;

let Te = T 0e and go to (9). Else go to (11).
(11) Save the values of Xtn+1 and Mtn+1 and use them as input during

the next time step of length 10� (that is go to (1)).

4. Simulations

In this section, we simulate a gas of Argon molecules con�ned to a one-
dimensional box using the algorithm presented in Section 3. The initial
state of the gas is given by standard conditions, that is, the temperature
is 273K and the pressure is 1atm. The length of the box is 1000�, where
� is the mean free path of gas molecules, and this corresponds to Knudsen
number 0:001. The wall temperature is �xed at 273K. Di¤usive re�ections
are assumed at the boundary wall, meaning that molecules colliding with the
wall rebound with a half-range Maxwellian distribution at the temperature
of the corresponding wall. In order to obtain the distribution of macroscopic
quantities, the simulation domain is divided into 300 cells, and each cell is
assigned 500 molecules at the initial state. The calculating time step is 10� ,
where � is the relaxation time.
Firstly, we compare the average �rst hitting time predicted by the scheme

presented in Section 3 to the average �rst hitting time predicted by the
scheme in [11] with linear interpolation. To obtain this comparison, we
proceed as follows. In each calculating time step, if a molecule collides with
one of the walls we record the hitting times predicted by our scheme and
the distance y between the previous location of the molecule and the hitting
wall. In addition, we record the virtual hitting time obtained by linear
interpolation method according to the previous location and the virtual new
location. After 103 simulation steps, the hitting times corresponding to a
speci�c distance y are averaged. Figure 1 demonstrates how the expected
�rst hitting time during time steps of length 10� depends on the initial
distance between the particle and the boundary and Figure 2 shows the
number of samples used for determining the �rst hitting times in Figure 1.
Note that the number of molecules colliding with the wall decreases as the
distance y to the wall increases.
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Figure 1. Average �rst hitting time t for particles initially
found at a distance y from the boundary as predicted by the
scheme in [11] with linear interpolation and by the scheme
presented in Section 3, respectively.

Figure 2. Histogram of the number of samples used for de-
termining the �rst hitting time for di¤erent values of the
distance y to the boundary
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Figure 3. Normalized density of molecules as predicted by
the scheme in [11] with linear interpolation and by the scheme
presented in Section 3, respectively.

For small y, the particles start close to the boundary and the scheme in
Section 3 then uses small time steps with linear interpolation to determine
the �rst hitting time. Hence the two curves in Figure 1 coincide in the limit
of small y. Note that the expected �rst hitting time does not converge to
zero as y tends to zero. This, perhaps surprising, result is due to half of
the particles starting with a velocity directed away from the boundary. The
motion of the particles for very small time steps is almost deterministic along
the initial velocity and a strictly positive period of time will therefore elapse
before the particles with initial velocity pointing away from the boundary
will turn towards the boundary and hit it.
For larger y, Figure 1 shows that the hitting time predicted by the scheme

in [11] with linear interpolation exceeds the hitting time predicted by the
scheme by the linear interpolation method is larger than that predicted by
the scheme in Section 3. This is due to the molecular movement being a
Wiener process rather than a linear process in the limit of large time steps.
Note that the di¤erence between the two estimates of the �rst hitting time
has a maximum at approximately 8� and then decreases as y is increased.
The decreasing di¤erence must occur since in the limit of in�nite y both
estimates should be 10� . Note also that, as seen in Figure 2, molecules
which are initially found further than 20� away from a wall are very unlikely
to collide with the wall in a single time step. Therefore, these particles are
excluded from the plot in Figure 1.
Figure 3 shows the distribution of molecules along the one-dimensional

box. The results are obtained by �rst simulating 103 time steps and then



12 THOMAS ÖNSKOG, JUN ZHANG

averaging over the next 103 time steps. Consequently, the number of sam-
ples for each cell is about 5 � 105 and the corresponding fractional error is
about 1:4 � 10�3 according to standard statistical mechanics [8]. Since the
wall temperature and the initial gas temperature coincide, we expect the
molecules to be uniformly distributed in this case. Indeed, the algorithm
presented in Section 3 predicts a uniform distribution, with the variation
between di¤erent locations in the box being less than 0:5%. On the other
hand, the scheme in [11], which uses linear interpolation to estimate the
hitting time, clearly overestimates the density near the boundary walls, as
shown in Figure 1. This e¤ect is due to linear interpolation overestimating
the hitting time, as was described in the Introduction.

5. Conclusions

The numerical scheme presented in Section 3 is shown to be an e¢ cient
stochastic particle Fokker-Planck algorithm with large time steps for wall-
con�ned �ows. The scheme at hand proves to be much more accurate close
to the wall compared to the scheme of Jenny et al. [11] with only a slight
increase in computational cost. There are schemes with small time steps,
such as that of Gorji and Jenny [6], which obtain similar results close to
the wall as the scheme presented in this article, but these schemes are much
less computational e¢ cient. To conclude, the scheme at hand predicts the
correct near wall behaviour with a minimum of computational cost.
The authors are currently working on applying the algorithm presented

in Section 3 to a variety of gas �ows. Note that we here only present a one-
dimensional algorithm, but the scheme could in the future be extended to
two-dimensional and three-dimensional gas �ows as well. Since our scheme
is applicable for large time steps, it makes the simulation of large-scale gas
�ows using particle methods possible.
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