Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Utilization of peridynamic theory for modeling at the nano-scale

Oterkus, E. and Diyaroglu, C. and Zhu, N. and Oterkus, Selda and Madenci, E. (2015) Utilization of peridynamic theory for modeling at the nano-scale. In: Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in atom and single molecule machines . Springer, pp. 1-16. ISBN 9783319211930

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Peridynamic theory is a new continuum mechanics formulation that has several advantages over the traditional approaches, such as Classical Continuum Mechanics (CCM) and Molecular Dynamics (MD). Due to its length-scale parameter, horizon, it is capable of capturing phenomena occurring at different length scales, including the nano-scale. Furthermore, van der Waals forces can be represented in a straightforward manner using a buffer-layer approach. In this chapter, various demonstration problems are presented to show the capability of peridynamics at the nano-scale, including nano-indentation and failure analysis of graphene sheets.