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1. Introduction

In many applications of operator and spectral theory eigenvalue problems appear 
which are nonlinear in the eigenvalue parameter, e.g. polynomially or rationally. Very 
often such problems can be dealt with by introducing a function of the spectral parameter 
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whose values are linear operators in a Hilbert space. To be more specific, let T (·) be an 
operator function that is defined on some set Δ ⊂ C and whose values are closed linear 
operators in a Hilbert space (H, 〈· , ·〉); for each λ ∈ Δ the domain of the operator T (λ) is 
denoted by dom(T (λ)). A number λ ∈ Δ is called an eigenvalue of the operator function 
T if there exists an x ∈ dom(T (λ)) \ {0} such that T (λ)x = 0, i.e. 0 is in the point 
spectrum of the operator T (λ). The spectrum, essential spectrum, discrete spectrum and 
resolvent set of T are defined as follows:

σ(T ) :=
{
λ ∈ Δ : 0 ∈ σ(T (λ))

}
,

σess(T ) :=
{
λ ∈ Δ : 0 ∈ σess(T (λ))

}
=

{
λ ∈ Δ : T (λ) is not Fredholm

}
,

σdis(T ) := σ(T ) \ σess(T ),

ρ(T ) :=
{
λ ∈ Δ : 0 ∈ ρ(T (λ))

}
;

note that a closed operator is called Fredholm if the dimension of the kernel and the 
(algebraic) co-dimension of the range are finite. A trivial example of an operator function 
is given by T (λ) = A − λI where A is a closed operator; in this case the spectra of the 
operator function T and the operator A clearly coincide. More complicated examples are 
operator polynomials or Schur complements of block operator matrices; see, e.g. [25,31]
and the references therein; see also the survey article [29] about numerical methods for 
eigenvalues of quadratic matrix polynomials.

It is our aim to show spectral enclosures and variational principles for eigenvalues 
of operator functions. In the 1950s R.J. Duffin [6] proved a variational principle for 
eigenvalues of certain quadratic matrix polynomials, which was generalised to infinite-
dimensional spaces and more general operator functions in the following decades; see, 
e.g. [27,32,14,36,1,25]. Basically, the following situation was considered. Let T be a dif-
ferentiable function defined on an interval [α, β] whose values are bounded self-adjoint 
operators in a Hilbert space H such that T (α) � 0 (i.e. T (α) is uniformly positive) and 
T (β) � 0. Moreover, for every x ∈ H\{0} the scalar function λ �→ 〈T (λ)x, x〉 has exactly 
one zero in (α, β), which we denote by p(x), and the inequality 〈T ′(p(x))x, x〉 < 0 holds. 
The mapping x �→ p(x) is called a generalised Rayleigh functional. The eigenvalues of 
T below the essential spectrum of T can accumulate at most at the bottom of σess(T ); 
if they are denoted by λ1 ≤ λ2 ≤ · · · , then they are characterised by the following 
variational principle:

λn = min
L⊂H

dim L=n

max
x∈L
x�=0

p(x) = max
L⊂H

dim L=n−1

min
x∈H

x⊥L, x �=0

p(x); (1.1)

here L denotes finite-dimensional subspaces of H. If T (λ) = A −λI where A is a bounded 
self-adjoint operator, then (1.1) reduces to the standard variational principle for eigen-
values of a self-adjoint operator; the generalised Rayleigh functional is then just the 
classical Rayleigh quotient: p(x) = 〈Ax,x〉

2 .
‖x‖
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In [2] the assumption that T (α) is uniformly positive was relaxed and replaced by 
the assumption that the negative spectrum of T (λ) consists of only a finite number κ of 
eigenvalues (counted with multiplicities), in which case n has to be replaced by n + κ

in the variations over the subspaces; also the generalised Rayleigh quotient has to be 
slightly modified (see Definition 2.1 (i) below); cf. also [35,34]. In [8] also functions whose 
values are unbounded operators were allowed; see also [15].

The main aim of our paper is to remove the assumption of the finiteness of the nega-
tive spectrum of T (α) and to allow also the characterisation of eigenvalues in gaps of the 
essential spectrum. In order to do this, a third variation is needed; see Theorem 5.1, the 
main result of the paper. This theorem greatly sharpens and extends [7, Theorem 2.4], 
where only an inequality was shown for operator functions and where it was assumed that 
the values are bounded operators (for some quadratic polynomials equality was proved). 
As part of the proof of Theorem 5.1 we also show such an inequality (Theorem 2.3) 
for a class of operator functions with less continuity assumptions then needed in The-
orem 5.1. To our knowledge the first triple variational principle appeared in [26] where 
eigenvalues of positive operators in Krein spaces were characterised; this was generalised 
in [28].

Our second main result, Theorem 2.2, is connected with the inequality in Theorem 2.3
and gives a sufficient condition for points being in the resolvent set of an operator 
function. In Theorem 3.4 this is used to obtain the existence of spectral gaps for perturbed 
self-adjoint operators. In a forthcoming paper [24] we will also apply Theorem 2.2 to prove 
spectral inclusions for certain block operator matrices.

Let us give a brief synopsis of the paper. In Section 2 we state and prove the re-
sult about points in the resolvent set of an operator function (Theorem 2.2) and the 
variational inequality (Theorem 2.3). We should mention that also an inequality for the 
essential spectrum is obtained. In Section 3 we consider self-adjoint operators, which need 
not be semi-bounded, and prove a variational principle for eigenvalues in arbitrary gaps 
of the essential spectrum (Theorem 3.1). Moreover, the above mentioned perturbation 
result for spectral gaps is proved there (Theorem 3.4). These results are applied to Dirac 
operators and to Schrödinger operators with perturbed periodic potentials. In Section 4
we prove a decomposition of the Hilbert space into a direct sum of three subspaces, one 
being the span of the eigenvectors corresponding to eigenvalues in an interval and the 
other two being spectral subspaces connected with the operators at the two endpoints 
of the interval (Theorem 4.1). This is the main ingredient in the proof of the other in-
equality of the variational principle in Theorem 5.1. Further, in Section 4 we prove that 
eigenvalues cannot accumulate outside the essential spectrum of an analytic operator 
function (Proposition 4.2). Finally, in Section 5 we prove the triple variational principle 
for eigenvalues of norm resolvent continuous operator functions. The result is illustrated 
with a quadratic operator polynomial.

Throughout this paper the term ‘subspace’ refers to a linear manifold, which is not 
necessarily closed. Moreover, � denotes a direct sum of two subspaces.
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2. A general variational inequality

In this section we consider a rather general class of self-adjoint operator functions and 
prove variational inequalities for eigenvalues. Moreover, we give sufficient conditions for 
points to belong to the resolvent set of such operator functions.

Let A be a self-adjoint operator in a Hilbert space H and let E be its spectral measure. 
We define the corresponding sesquilinear form a by

a[x, y] :=
∫
R

μ d〈E(μ)x, y〉 (2.1)

for x, y ∈ dom(a) := dom
(
|A|1/2

)
. Moreover, we introduce the quadratic form

a[x] := a[x, x], x ∈ dom(a).

Note that, for x ∈ dom(A) and y ∈ dom(a), we have a[x, y] = 〈Ax, y〉. If A is bounded 
from below, then this definition clearly coincides with the definition in [16, §IV.1.5]. For 
more information on non-semi-bounded forms see, e.g. [10,13].

Let L be a (not necessarily closed) subspace of dom(a). We say that L is a-non-negative
if

a[x] ≥ 0 for every x ∈ L;

L is called maximal a-non-negative if it cannot be extended to a larger subspace with 
the same property.

Throughout the paper denote by LΔ(A) the spectral subspace for A corresponding to 
a Borel set Δ ⊂ R, i.e. LΔ(A) = ranE(Δ).

Assumptions (A1)–(A3). Let T be an operator function defined on some interval Δ ⊂ R

whose values are operators in a Hilbert space H. We assume that the following conditions 
are satisfied:

(A1) T (λ) is self-adjoint for every λ ∈ Δ with corresponding quadratic form t(λ);
(A2) dom(t(λ)) = dom

(
|T (λ)|1/2

)
is independent of λ and denoted by D;

(A3) for each x ∈ D \ {0}, the function λ �→ t(λ)[x] is continuous and decreasing at 
value 0, i.e. if t(λ0)[x] = 0 for some λ0 ∈ Δ, then

t(λ)[x] > 0 for λ ∈ Δ such that λ < λ0,

t(λ)[x] < 0 for λ ∈ Δ such that λ > λ0.

Occasionally — in particular, when the essential spectrum is involved — we need the 
following condition, which is named after A. Virozub and V. Matsaev (see [33] and also 
[22,20]):
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(VM−) for every u ∈ D, the function t(·)[u] is differentiable on Δ and, for every compact 
subinterval I of Δ, there exist ε, δ > 0 such that, for all x ∈ D with ‖x‖ = 1
and all λ ∈ I,

∣∣t(λ)[x]
∣∣ ≤ ε =⇒ t′(λ)[x] ≤ −δ. (2.2)

Obviously, for fixed λ ∈ I, this condition (i.e. (2.2) for x ∈ D with ‖x‖ = 1) is equivalent 
to the condition that

∣∣t(λ)[x]
∣∣ ≤ ε‖x‖2 =⇒ t′(λ)[x] ≤ −δ‖x‖2 (2.3)

for all x ∈ D.
In [33,22,20] the Virozub–Matsaev condition was studied with t′(λ) ≥ δ instead of 

t′(λ) ≤ −δ. Moreover, the definition was slightly different but equivalent to ours (apart 
from the different sign) for the functions considered in [20], which were assumed to have 
bounded operators as values and to be continuously differentiable in the operator norm, 
cf. [20, Lemma 3.6].

Next we define the notion of a generalised Rayleigh functional. First note that, by 
Assumption (A3), the function λ �→ t(λ)[x] has at most one zero for a given x ∈ D \ {0}. 
If it has a zero, we define a generalised Rayleigh functional p(x) to be equal to this zero; 
otherwise, we assign a value outside Δ. More precisely, we define a generalised Rayleigh 
functional as follows.

Definition 2.1. Let T be an operator function defined on Δ that satisfies Assump-
tions (A1)–(A3) and let t(λ) be the corresponding forms.

(i) A functional p : D \ {0} → R ∪ {±∞} is called a generalised Rayleigh functional for 
T on Δ if, for all x ∈ D \ {0},

p(x) = λ0 if t(λ0)[x] = 0,

p(x) < λ for all λ ∈ Δ if t(μ)[x] < 0 for all μ ∈ Δ,

p(x) > λ for all λ ∈ Δ if t(μ)[x] > 0 for all μ ∈ Δ.

(ii) For γ ∈ Δ set

M+
γ :=

{
M : M is a maximal t(γ)-non-negative subspace of D

}
.

In [2,7,8] generalised Rayleigh functionals were defined such that p(x) = −∞ and 
p(x) = +∞ in the second and third case in (i) above. This does not change results, but 
our definition gives more flexibility in applications; cf. also [15, §3]. Note that the choice 
with ±∞ is also allowed in our definition. Note that, for all λ ∈ Δ and x ∈ D \ {0},
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p(x) � λ ⇐⇒ t(λ)[x] � 0. (2.4)

Moreover, if λ0 is an eigenvalue of T with eigenvector x0, i.e. T (λ0)x0 = 0, then 
p(x0) = λ0.

The next two theorems are the main results of this section. The first one can be used 
to show that some point is in the resolvent set of an operator function. The second 
one, which is a generalisation of [7, Theorem 2.4], gives triple variational inequalities for 
eigenvalues and the bottom of the essential spectrum of an operator function.

Theorem 2.2. Assume that T satisfies (A1)–(A3) and (VM−). Let μ1, μ2 ∈ Δ with 
μ1 < μ2. If there exist M ∈ M+

μ1
and a > 0 such that

t(μ2)[x] ≥ a‖x‖2 for all x ∈ M, (2.5)

then μ2 ∈ ρ(T ).

Theorem 2.3. Let Δ ⊂ R be an interval with right endpoint β ∈ R ∪ {+∞} and let T
be an operator function defined on Δ which satisfies Assumptions (A1)–(A3). Moreover, 
let p be a generalised Rayleigh functional for T on Δ, let γ ∈ ρ(T ) with γ < β, and set

λe :=
{

inf
(
σess(T ) ∩ (γ, β)

)
if σess(T ) ∩ (γ, β) �= ∅,

β otherwise.
(2.6)

Let (λj)Nj=1, N ∈ N0 ∪ {∞}, be a finite or infinite sequence of eigenvalues of T in the 
interval (γ, λe) in non-decreasing order such that, for each set of k coinciding eigenvalues, 
say λi = λi+1 = . . . = λi+k−1, one has dim kerT (λi) ≥ k. Then

sup
M∈M+

γ

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

p(x) ≤ λn, n ∈ N, n ≤ N. (2.7)

Moreover, if T satisfies the condition (VM−) and σess(T ) ∩ (γ, β) �= ∅, then

sup
M∈M+

γ

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

p(x) ≤ λe, n ∈ N. (2.8)

Remark 2.4.

(i) The statement in Theorem 2.2 is false without the assumption (VM−) as can be 
seen from the following example. Let A be a self-adjoint operator in a Hilbert space 
H with spectrum σ(A) = [0, 1] but having 0 not as an eigenvalue. The operator 
function T (λ) = −λ2I −A satisfies Assumptions (A1)–(A3) since t(λ)[x] < 0 for all 
x ∈ H \ {0} and λ ∈ R. If we choose μ1 = −1 and μ2 = 0, then M+

−1 = {{0}} and 
therefore relation (2.5) is satisfied. However, 0 ∈ σ(T ).
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(ii) Note that the variations on the left-hand sides of (2.7) and (2.8) are over non-empty 
sets for those n considered there, i.e. there exists an M ∈ M+

γ which is at least 
n-dimensional; see the beginning of the proof of Theorem 2.3.

(iii) Under our assumptions one obtains in general only an inequality and not equal-
ity as the following example shows. Consider the operator function T (λ) =
diag(T1(λ), T2(λ), . . . ), λ ∈ Δ = R, in the space H = �2 where the piece-wise 
linear functions Tk are defined as

Tk(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, λ ≤ 0,

1 − kλ, 0 < λ < 2
k ,

−1, λ ≥ 2
k .

The spectrum of T consists only of eigenvalues:

σ(T ) = σp(T ) =
{

1
k

: k ∈ N

}
,

but the variations on the left-hand side of (2.7) are equal to 0 for all n ∈ N if one 
chooses, e.g. γ = 0.

(iv) Note that in the last statement of the theorem the condition (VM−) is necessary as 
can be seen from the example given in [8, Remark 2.10].

Before we prove the theorems, we need a couple of lemmas.

Lemma 2.5. Let A be a self-adjoint operator, a the corresponding form, and assume that 
0 ∈ ρ(A). Let M be a maximal a-non-negative subspace of dom(a) = dom(|A|1/2), M′ an 
a-non-negative subspace of dom(a) and L ⊂ M ∩M′. Then

dim(M/L) ≥ dim(M′/L).

Proof. Since 0 ∈ ρ(A), K := dom(a) is a Krein space with inner product a[· , ·], i.e. it 
is a direct and orthogonal sum of the Hilbert space K+ = L(0,∞)(A) ∩ dom(a) and the 
anti-Hilbert space K− = L(−∞,0)(A) ∩ dom(a). According to [18, Proposition I.1.1] and 
its first corollary, M and M′ have angular operator representations, i.e., with respect to 
the decomposition K = K+ +̇K−, they can be written as

M =
{(

x

CMx

)
: x ∈ K+

}
, M′ =

{(
x

CM′x

)
: x ∈ dom(CM′)

}
, (2.9)

where CM and CM′ are bounded operators from K+ to K− with dom(CM) = K+ and 
dom(CM′) ⊂ K+. This implies that M is isomorphic to K+ and M′ is isomorphic to a 
subspace of K+. From this the claim is immediate. �
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Lemma 2.6. Let a be a quadratic form with domain dom(a) corresponding to a self-adjoint 
operator A. Let u ∈ dom(a), v ∈ dom(A) and a, b, c > 0 such that

a[u] ≥ a‖u‖2, ‖Av‖ ≤ b‖v‖

and

ac > b(a + b + 3c).

If u �= 0 or v �= 0, then

a[u + v] + c‖u + v‖2 > 0.

Proof. We can estimate

a[u + v] + c‖u + v‖2

= a[u] + 2 Re〈Av, u〉 + 〈Av, v〉 + c‖u‖2 + 2cRe〈v, u〉 + c‖v‖2

≥ a[u] − 2‖Av‖ ‖u‖ − ‖Av‖ ‖v‖ + c‖u‖2 − 2c‖u‖ ‖v‖ + c‖v‖2

≥ a‖u‖2 − 2b‖v‖ ‖u‖ − b‖v‖2 + c‖u‖2 − 2c‖u‖ ‖v‖ + c‖v‖2

= (a + c)‖u‖2 − 2(b + c)‖u‖ ‖v‖ + (c− b)‖v‖2. (2.10)

Since a + c > 0, the quadratic form in ‖u‖ and ‖v‖ is positive definite if and only if

(a + c)(c− b) − (b + c)2 > 0,

which is equivalent to

ac > b(a + b + 3c).

As this inequality is true by assumption, the expression in (2.10) is positive unless both 
‖u‖ and ‖v‖ are zero. �

In the next lemmas T is an operator function defined on an interval Δ.

Lemma 2.7. Assume that T satisfies (A1)–(A3) and (VM−). Let μ1, μ2 ∈ Δ with μ1 < μ2

and let ε and δ be such that (2.3) is valid for all λ ∈ [μ1, μ2] and x ∈ D. Then

t(μ2)[x] ≥ −ε‖x‖2 =⇒ t(μ1)[x] ≥ min
{
ε‖x‖2, t(μ2)[x] + δ(μ2 − μ1)‖x‖2}

for all x ∈ D.
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Proof. Without loss of generality we may assume that ‖x‖ = 1. If t(λ0)[x] ≥ ε for 
some λ0 ∈ [μ1, μ2], then, clearly, t(λ)[x] ≥ ε for all λ ∈ [μ1, λ0]; if t(λ0)[x] ≤ −ε for 
some λ0 ∈ [μ1, μ2], then t(λ)[x] ≤ −ε for all λ ∈ [λ0, μ2]. Now, if t(μ1)[x] ≥ ε, then 
there is nothing to prove. Otherwise, t(λ)[x] ∈ [−ε, ε] for all λ ∈ [μ1, μ2] and therefore 
t′(λ)[x] ≤ −δ for such λ. Hence

t(μ1)[x] = t(μ2)[x] −
μ2∫

μ1

t′(λ)[x] dλ ≥ t(μ2)[x] + δ(μ2 − μ1),

which shows the assertion. �
Lemma 2.8. Assume that T satisfies (A1)–(A3) and (VM−). Let μ1, μ2 ∈ Δ with μ1 < μ2
and let ε and δ be such that (2.3) is valid for all λ ∈ [μ1, μ2] and x ∈ D. Moreover, let 
a, b > 0, set c := min{ε, δ(μ2 − μ1)} and suppose that

ac > b(a + b + 3c).

If u ∈ D, v ∈ dom(T (μ2)) are such that

t(μ2)[u] ≥ a‖u‖2, ‖T (μ2)v‖ ≤ b‖v‖

and u �= 0 or v �= 0, then

t(μ1)[u + v] > 0.

Proof. It follows from Lemma 2.6 applied to a = t(μ2) that

t(μ2)[u + v] + c‖u + v‖2 > 0. (2.11)

Since c ≤ ε, we have t(μ2)[u + v] ≥ −ε‖u + v‖2. Now Lemma 2.7 implies that

t(μ1)[u + v] ≥ min
{
ε‖u + v‖2, t(μ2)[u + v] + δ(μ2 − μ1)‖u + v‖2}.

The first expression in the minimum is positive because u + v �= 0 by (2.11). The second 
expression in the minimum is also positive:

t(μ2)[u + v] + δ(μ2 − μ1)‖u + v‖2 > −c‖u + v‖2 + δ(μ2 − μ1)‖u + v‖2 ≥ 0

by the definition of c, which implies the assertion. �
Lemma 2.9. Assume that T satisfies (A1)–(A3) and (VM−). Let a > 0, μ1, μ2 ∈ Δ with 
μ1 < μ2, and let M be a subspace of D. Moreover, suppose that μ2 ∈ σ(T ) and that

t(μ2)[x] ≥ a‖x‖2 for all x ∈ M. (2.12)
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Then there exists a subspace M′ such that M � M′ ⊂ D and

t(μ1)[x] > 0 for all x ∈ M′, x �= 0.

Proof. Let ε and δ be such that (2.3) is valid for all λ ∈ [μ1, μ2] and x ∈ D. Set 
c := min{ε, δ(μ2 − μ1)} and choose a positive number b such that b < a and ac >
b(a + b + 3c). Since μ2 ∈ σ(T ), there exists a v0 ∈ dom(T (μ2)) ⊂ D such that ‖v0‖ = 1
and ‖T (μ2)v0‖ ≤ b. Set M′ := M + span{v0}. The space M′ is strictly larger than 
M because b < a and (2.12) is satisfied. Now let u ∈ M and v ∈ span{v0}. Then 
t(μ1)[u + v] > 0 if u + v �= 0 by Lemma 2.8. �

Theorem 2.2 is now an immediate consequence of the previous lemma.

Proof of Theorem 2.2. If μ2 ∈ σ(T ), then, by Lemma 2.9, there exists M′ ⊂ D, M � M′

such that t(μ1)[x] ≥ 0 for all x ∈ M′, which contradicts the maximality of M as a 
t(μ1)-non-negative subspace. �

Before we prove Theorem 2.3 we need two more lemmas.

Lemma 2.10. Assume that T satisfies (A1)–(A3). Let λ1, . . . , λm be eigenvalues of T with 
eigenvectors u1, . . . , um and let μ, ν ∈ Δ such that μ ≤ λ1 ≤ · · · ≤ λm ≤ ν. Moreover, 
let y ∈ D and c1, . . . , cm ∈ C.

(i) If t(ν)[y] ≥ 0, then

t(μ)[y + c1u1 + . . . + cmum] ≥ 0.

(ii) If t(μ)[y] ≤ 0, then

t(ν)[y + c1u1 + . . . + cmum] ≤ 0.

Proof. We prove only the assertion in (i); the statement in (ii) is proved analogously.
Since t(ν)[y] ≥ 0 and T satisfies Assumption (A3), we have t(λm)[y] ≥ 0. Using the 

fact that λm is an eigenvalue of T with eigenvector um, i.e. that T (λm)um = 0, we obtain

t(λm)[y + cmum] = t(λm)[y] + 2 Re
〈
cmT (λm)um, y

〉
+ |cm|2

〈
T (λm)um, um

〉
= t(λm)[y] ≥ 0

and hence, again by Assumption (A3), t(λm−1)[y+ cmum] ≥ 0. Repeating this argument 
we get

t(λ1)[y + c1u1 + · · · + cmum] ≥ 0.

Finally, we can once more use Assumption (A3) to prove the claim. �
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Lemma 2.11. Assume that T satisfies (A1)–(A3). Let λ1 ≤ λ2 ≤ · · · ≤ λm be eigenvalues 
of T such that, for each set of k coinciding eigenvalues, say λi = λi+1 = . . . = λi+k−1, 
one has dim kerT (λi) ≥ k. Then there exist linearly independent vectors u1, . . . , um such 
that uj is an eigenvector of T corresponding to λj, j = 1, . . . , m.

Proof. For every λj choose an eigenvector uj such that for coinciding eigenvalues the 
eigenvectors are linearly independent. Assume that there exist numbers α1, . . . , αm ∈ C, 
not all equal to 0, such that

α1u1 + . . . + αmum = 0.

Let αn be the last non-zero coefficient, i.e. αn �= 0 and

α1u1 + . . . + αnun = 0.

Because the uj are chosen to be linearly independent for coinciding eigenvalues, we have 
λ1 < λn. Let k be such that

λk < λk+1 = . . . = λn.

Since uk+1, . . . , un are linearly independent and αn �= 0, it follows that

α1u1 + . . . + αkuk = −(αk+1uk+1 + . . . + αnun) �= 0.

From Lemma 2.10 (ii) with y = 0 we obtain that

t(λk)[α1u1 + . . . + αkuk] ≤ 0. (2.13)

The fact that αk+1uk+1 + . . .+αnun is an eigenvector to the eigenvalue λn implies that 
t(λn)[αk+1uk+1 + . . . + αnun] = 0. Hence

0 = t(λn)[αk+1uk+1 + . . . + αnun] = t(λn)[α1u1 + . . . + αkuk]

< t(λk)[α1u1 + . . . + αkuk]

by (A3), which is a contradiction to (2.13). �
Note that, without Assumption (A3), the statement of the previous lemma is false in 

general; see, e.g. the example in [22, Remark 7.7].
Now we can turn to the proof of Theorem 2.3.

Proof of Theorem 2.3. First we show Remark 2.4 (ii). Let n ∈ N and assume that T has at 
least n eigenvalues in (γ, λe) counted with multiplicities. It follows from Lemma 2.11 that 
there exist linearly independent eigenvectors u1, . . . , un of T corresponding to λ1, . . . , λn. 
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By Lemma 2.10 (i) the space span{u1, . . . , un} is t(γ)-non-negative and can be extended 
to a maximal t(γ)-non-negative subspace by Zorn’s lemma, which shows the statement 
concerning (2.7). For the analogous statement for (2.8) let μ2 ∈ σess(T ) ∩ (γ, β) and 
a, b, c as in Lemma 2.8 where ε, δ are such that (2.3) is valid on [γ, μ2]. If n ∈ N, then 
there exists an n-dimensional subspace M′ of dom(T (μ2)) such that ‖T (μ2)v‖ ≤ b‖v‖ for 
v ∈ M′. It follows from Lemma 2.8 with u = 0 that the space M′ is t(γ)-non-negative. 
Again we can extend this space to a maximal t(γ)-non-negative subspace.

Suppose that the inequality in (2.7) is false for some n. Then there exist an M ∈ M+
γ

and a subspace L ⊂ M with dimL = n − 1 such that

inf
x∈M\{0}

x⊥L

p(x) > λn.

Hence

t(λn)[y] > 0, y ∈ M� L, y �= 0. (2.14)

By Lemma 2.11 there exist linearly independent eigenvectors u1, . . . , un corresponding 
to the eigenvalues λ1, . . . , λn. According to Lemma 2.10 (i) we have

t(γ)[y + c1u1 + · · · + cnun] ≥ 0

for all y ∈ M � L and c1, . . . , cn ∈ C. This implies that

M′ := (M� L) + span{u1, . . . , un} (2.15)

is a t(γ)-non-negative subspace of D. The sum in (2.15) is direct because of (2.14) and

t(λn)[x] ≤ 0, x ∈ span{u1, . . . , un},

which is true by Lemma 2.10 (ii). Hence

dim
(
M′/(M� L)

)
= n, dim

(
M/(M� L)

)
= n− 1.

Lemma 2.5 shows that this contradicts the maximality of M.
For the second part assume that the inequality in (2.8) is false for some n ∈ N. There 

exist an M ∈ M+
γ and a subspace L ⊂ M with dimL = n − 1 such that

μ2 := inf
x∈M\{0}

x⊥L

p(x) > λe. (2.16)

According to the definition of λe there exists a number μ1 ∈ σess(T ) so that λe ≤ μ1 < μ2. 
It follows from (2.16) that t(μ2)[x] ≥ 0 for x ∈ M � L and hence from Lemma 2.7 that
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t(μ1)[x] ≥ a‖x‖2, x ∈ M� L, (2.17)

where a := min{ε, δ(μ2 − μ1)} and ε, δ are such that (2.3) is valid for all λ ∈ [γ, μ2] and 
x ∈ D. Set c := min{ε, δ(μ1−γ)} and choose b > 0 such that b < a and ac > b(a +b +3c). 
Since μ1 ∈ σess(T ), i.e. 0 ∈ σess(T (μ1)), there exists an n-dimensional subspace V of 
dom(T (μ1)) ⊂ D such that

‖T (μ1)v‖ ≤ b‖v‖ for all v ∈ V. (2.18)

Set M′ := (M � L) +̇V; the sum is direct because of (2.17), (2.18) and the inequality 
b < a. It follows from (2.17), (2.18) and Lemma 2.8 that

t(γ)[y] ≥ 0 for all y ∈ M′, (2.19)

i.e. M′ is t(γ)-non-negative. Since

dim
(
M′/(M� L)

)
= n, dim

(
M/(M� L)

)
= n− 1,

this is a contradiction to the maximality of M according to Lemma 2.5. �
3. Self-adjoint operators

Let A be a self-adjoint operator and a the corresponding quadratic form with domain 
D := dom(a) = dom

(
|A|1/2

)
. We introduce the operator function T (λ) = A − λI and 

the associated form t(λ)[x, y] = a[x, y] − λ〈x, y〉, where λ ∈ R and x, y ∈ D. Note 
that T satisfies Assumptions (A1)–(A3) and the condition (VM−) on any interval since 
t′(λ)[x] = −‖x‖2. As in Definition 2.1 (ii) set

M+
γ :=

{
M : M is a maximal (a− γ)-non-negative subspace of D

}
for γ ∈ R.

In the following theorem eigenvalues in a gap of the essential spectrum are charac-
terised by a triple variational principle. This result is a generalisation of [7, Theorem 3.1]
to unbounded operators. For other types of variational principles for eigenvalues of self-
adjoint operators in gaps of the essential spectrum see, e.g. [5,12,17,21], where a given 
decomposition of the space is used. Note that Theorem 3.1 is not a corollary of Theo-
rem 5.1 below since there we assume that the values of the operator function are operators 
that are bounded from below, which is not assumed in Theorem 3.1.

Theorem 3.1. Let γ ∈ ρ(A) ∩ R and set

λe := inf
(
σess(A) ∩ (γ,∞)

)
.
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Moreover, let (λj)Nj=1, N ∈ N0 ∪ {∞}, be the finite or infinite sequence of eigenval-
ues in (γ, λe) in non-decreasing order and counted according to their multiplicities: 
λ1 ≤ λ2 ≤ · · ·. Then

λn = sup
M∈M+

γ

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

a[x]
‖x‖2 , n ∈ N, n ≤ N. (3.1)

Moreover, if N is finite and σess(A) ∩ (γ, ∞) �= ∅, then

min
(
σess(A) ∩ (γ,∞)

)
= sup

M∈M+
γ

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

a[x]
‖x‖2 , n > N. (3.2)

Proof. The inequalities ‘≤’ in (3.1) and (3.2) follow from Theorem 2.3 since

p(x) = a[x]
‖x‖2

is a generalised Rayleigh functional for the operator function T on (γ, ∞). To show the 
reverse inequalities, set M := L(γ,∞)(A) ∩D where L(γ,∞)(A) denotes the spectral sub-
space for A corresponding to the interval (γ, ∞). Clearly, M is maximal t(γ)-non-negative 
because

D =
(
L(−∞,γ)(A) ∩D

)
+̇
(
L(γ,∞)(A) ∩D

)
.

The operator A|dom(A)∩L(γ,∞)(A) is self-adjoint in H′ := L(γ,∞)(A) and bounded from 
below. A standard variational principle yields that

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

a[x]
‖x‖2 = λn, n ∈ N, n ≤ N,

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

a[x]
‖x‖2 = λe, n > N,

which shows the inequalities ‘≥’ in (3.1) and (3.2). �
Remark 3.2. Let us denote by M++

γ the set of M ∈ M+
γ on which a − γ is uniformly 

positive, i.e.

M++
γ :=

{
M ∈ M+

γ : ∃ c > 0 such that a[x] − γ‖x‖2 ≥ c‖x‖2 for x ∈ M
}
.

One can replace the first supremum in (3.1) and (3.2) by supM∈M++
γ

because M++
γ ⊂ M+

γ

and the maximising subspace that is used in the proof of Theorem 3.1 belongs to M++
γ .
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Assume for the rest of this remark that γ = 0, which is without loss of generality. Let 
M ∈ M++

0 and let CM be as in (2.9). Then ‖CM‖ < 1, and hence the form aM := a|M is a 
closed positive form in the Hilbert space M. Let AM be the representing operator of aM in 
the sense of [16, Theorem VI.2.1], and let λ1(AM) ≤ λ2(AM) ≤ · · · be the eigenvalues of 
AM below the essential spectrum; if there is only a finite number, say NM, of eigenvalues, 
then set λn(AM) := min σess(AM) for n > NM. The standard variational principle for 
semi-bounded operators yields

λn(AM) = sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

a[x]
‖x‖2 , n ∈ N.

Hence relation (3.1) with M+
0 replaced by M++

0 turns into

λn = sup
M∈M++

0

λn(AM), n ∈ N, n ≤ N, (3.3)

and a similar relation holds for λe if N is finite.

Example 3.3. Consider the Dirac operator

D :=
3∑

j=1
αj

1
i
∂j + β + V

in the space L2(R3; C4) where αj and β are the 4 × 4 complex matrices

αj =
(

0 σj

σj 0

)
, β =

(
I 0
0 −I

)

with σj being the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and where V is the electrostatic potential. Assume that V is such that D is a self-adjoint 
operator with form domain D = dom(|D|1/2) and form d as in (2.1). If γ ∈ ρ(D), then 
one can characterise eigenvalues of D in (γ, min(σess(D) ∩ (γ, ∞))) with (3.1).

Let D0 be the free Dirac operator, i.e. the operator from above with V ≡ 0 and set 
M0 := L(0,∞)(D0) ∩D. Assume that there exists c > 0 such that

d[x] ≥ c‖x‖2 for x ∈ M0,

d[x] < 0 for x ∈ M⊥
0 ∩D. (3.4)
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These conditions are satisfied, e.g. when

− μ

|x| ≤ V (x) ≤ 0 (3.5)

with 0 ≤ μ ≤ 2/
(
π
2 + 2

π

)
; see [30, Theorem 1]. If (3.4) is satisfied, then M0 ∈ M++

0 , 
where M++

0 is as in Remark 3.2. Then d|M0 defines a positive self-adjoint operator B
in the Hilbert space L(0,∞)(D0), which was called Brown–Ravenhall operator in the 
literature; see, e.g. [4,9,30,12]. Let λn(B) be the eigenvalues of B below its essential 
spectrum; if B has only a finite number, say NB, of such eigenvalues, then set λn(B) :=
min σess(B) for n > NB . Moreover, let λn(D) be the eigenvalues of D in the interval 
(0, min(σess(D) ∩(0, ∞))); again if there are only finitely many such eigenvalues, say ND, 
then set λn(D) = min(σess(D) ∩ (0, ∞)) for n > ND. Relation (3.3) implies that

λn(B) ≤ λn(D), n ∈ N.

This inequality was proved for V satisfying (3.5) with μ <
√

3/2 in [12, Theorem 6]. 
The relation in (3.3) also shows that the eigenvalues of the Dirac operator are obtained 
by maximising the eigenvalues of operators that are obtained in a similar way as B but 
with arbitrary M ∈ M++

0 .

The following theorem shows that for a non-negative perturbation of a self-adjoint 
operator a spectral gap closes only from one side.

Theorem 3.4. Let A be a self-adjoint operator with corresponding quadratic form a and 
α, β ∈ R such that (α, β) ⊂ ρ(A). Moreover, let b be a non-negative quadratic form 
with dom(b) ⊃ dom(a) such that a + b with domain dom(a) is the quadratic form of a 
self-adjoint operator C, and assume that

b[x] ≤ a‖x‖2 + ba[x], x ∈ dom(a), (3.6)

with some a, b ≥ 0. If α̂ < β where

α̂ := α + a + bα, (3.7)

then (α̂, β) ⊂ ρ(C).

Proof. Consider the operator function T (λ) := C − λI with corresponding forms t(λ) =
a + b − λ with domains D = dom(a) and the subspace

M := L(α,∞)(A) ∩D = L[β,∞)(A) ∩D.

Let μ ∈ (α̂, β) and choose some μ1 ∈ (α̂, μ). For x ∈ M and λ ∈ (α, β) we have

t(λ)[x] = a[x] + b[x] − λ‖x‖2 ≥ (β − λ)‖x‖2. (3.8)



M. Langer, M. Strauss / Journal of Functional Analysis 270 (2016) 2019–2047 2035
In particular, this shows that M is a t(μ1)-non-negative subspace of D. Assume that M is 
not maximal t(μ1)-non-negative. Then there exists a non-zero element x0 in L(−∞,α](A) ∩
D such that t(μ1)[x0] ≥ 0. However,

t(μ1)[x0] = a[x0] + b[x0] − μ1‖x0‖2

≤ a[x0] + a‖x0‖2 + ba[x0] − μ1‖x0‖2

≤
(
(1 + b)α + a− μ1

)
‖x0‖2 = (α̂− μ1)‖x0‖2 < 0,

which is a contradiction. Hence M ∈ M+
μ1

. Since β > μ, it follows from (3.8) with λ
replaced by μ and Theorem 2.2 that μ ∈ ρ(T ) = ρ(C). �

If A is bounded from below and b is a non-negative form with dom(b) ⊃ dom(a), then 
a + b with domain dom(a) is a closed form that is bounded from below (see, e.g. [16, 
Theorem VI.1.31]). Hence there exists a self-adjoint operator C that represents the form 
a + b by [16, Theorem VI.2.1]. Therefore Theorem 3.4 can be applied if (3.6) is satisfied.

If B is a bounded non-negative operator, then α̂ = a + ‖B‖ in Theorem 3.4; see [3, 
Section 9.4] for related considerations.

Example 3.5. Consider a Schrödinger operator H0 in Rn with potential V0 such that H0
is bounded from below and has a gap (α, β) in the spectrum. For instance, V0 can be a 
periodic potential. Moreover, let V1 be non-negative perturbation of V0. Let h0 and v1
be the quadratic forms corresponding to H0 and the multiplication operator with V1 and 
assume that dom(h0) ⊂ dom(v1) and that there exist a, b ≥ 0 such that

∫
Rn

V1(x)|u(x)|2dx ≤ a

∫
Rn

|u(x)|2dx + b

∫
Rn

(
|∇u(x)|2 + V0(x)|u(x)|2

)
dx

for u ∈ dom(h0). Let H be the operator corresponding to the form h := h0 +v1. If α̂ < β

with α̂ defined as in (3.7), then (α̂, β) ⊂ ρ(H).

4. A spectral decomposition

In this section we consider operator functions that are continuous in the norm re-
solvent sense and are such that, on some interval [α, β], its spectrum consists only of 
a finite number of eigenvalues. The main result is a decomposition of the space into 
three components: two components are connected with the endpoints α, β, and the third 
component is the span of the eigenvectors corresponding to the eigenvalues in [α, β]. 
This decomposition result is an analogue of [22, Theorem 7.3] where analytic operator 
functions whose values are bounded operators were considered but arbitrary spectrum 
was allowed in [α, β]; cf. also similar results for Schur complements of block operator 
matrices in [23] and [19]. The decomposition in the following theorem is also used in the 
next section to prove a variational principle.
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In Proposition 4.2 we prove that, for holomorphic functions of type (B), no accumu-
lation of eigenvalues outside the essential spectrum can occur, so that the discreteness 
assumption of Theorem 4.1 is automatically satisfied outside the essential spectrum.

Theorem 4.1. Let T be an operator function defined on the interval [α, β], where α, β ∈ R, 
α < β, which satisfies Assumptions (A1)–(A3), is continuous in the norm resolvent 
sense, and T (λ) is bounded from below for each λ ∈ [α, β]. Assume that α, β ∈ ρ(T ) and 
that

σ(T ) ∩ (α, β) = {λ1, . . . , λn} ⊂ σdis(T )

where λ1 ≤ · · · ≤ λn are repeated according to their multiplicities. Moreover, let 
u1, . . . , un be corresponding linearly independent eigenvectors, which exist by Lemma 2.11. 
Then

H = L(−∞,0)
(
T (α)

)
� span{u1, . . . , un} � L(0,∞)

(
T (β)

)
. (4.1)

The next proposition gives a sufficient condition for σ(T ) having no accumulation 
point on an interval. Note that, without any further continuity assumption, functions 
satisfying (A1)–(A3) may have a sequence of eigenvalues that accumulates outside the 
essential spectrum; see, e.g. the example in Remark 2.4 (iii). Recall that an operator 
function T defined on a domain U ⊂ C is said to be holomorphic of type (B) if T (λ) is 
m-sectorial for every λ ∈ U , the domain of the corresponding closed quadratic form t(λ)
is independent of λ: dom(t(λ)) ≡ D, and t(·)[x] is holomorphic on U for every x ∈ D. 
Instead of (A3) we assume the slightly stronger assumption:

(A3)′ if t(λ0)[x] = 0 for some x ∈ D \ {0} and λ0 ∈ Δ, then t′(λ0)[x] < 0.

In [20] this condition with the reverse inequality for the derivative was called (vm). Note 
that, without any assumption of type (A3) or (A3)′, the result would be incorrect as the 
zero function on a finite-dimensional space shows.

Proposition 4.2. Let U be a domain in C and let T be a holomorphic family of operators 
of type (B) defined on U . Moreover, let α, β ∈ R with α < β be such that (α, β) ⊂ U , 
T satisfies Assumptions (A1), (A2), (A3)′ on (α, β) and σess(T ) ∩ (α, β) = ∅. Then 
σ(T ) ∩ (α, β) has no accumulation point in (α, β).

We first prove Theorem 4.1. The main idea is to add eigenvalues successively (see 
(4.10)). The main auxiliary results needed in this process are contained in Lemmas 4.5
and 4.6.
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Lemma 4.3. Let L1, L2 be closed subspaces of H and assume that L1 ∩ L2 = {0}. The 
sum L1 � L2 is not closed if and only if there exist xn ∈ L1, yn ∈ L2 such that

‖xn‖ = 1 for all n ∈ N, ‖xn + yn‖ → 0 as n → ∞. (4.2)

Proof. If L1�L2 is not closed, then, by [11, Theorem 2.1.1], there exist xn ∈ L1, yn ∈ L2

such that

‖xn + yn‖ <
1
n

(
‖xn‖ + ‖yn‖

)
.

Clearly, xn �= 0 for all n ∈ N. Without loss of generality we can choose xn such that 
‖xn‖ = 1. The relation

1
n

(
‖xn‖ + ‖yn‖

)
> ‖xn + yn‖ ≥ ‖yn‖ − ‖xn‖

implies that ‖yn‖ ≤ n+1
n−1 for n ≥ 2 and hence that ‖xn + yn‖ → 0, which is (4.2).

Conversely, assume that there exist xn ∈ L1, yn ∈ L2 that satisfy (4.2). Then, clearly, 
there exists no K such that

‖xn + yn‖ ≥ K
(
‖xn‖ + ‖yn‖

)
for all n ∈ N.

Hence, by [11, Theorem 2.1.1], the sum L1 � L2 is not closed. �
In Lemmas 4.4–4.6 we assume that the assumptions of Theorem 4.1 are satisfied.

Lemma 4.4. Let a, b ∈ [α, β] with a < b and let H1 ⊂ D be a closed subspace such that 
t(a)[x] ≤ 0 for all x ∈ H1. Assume that (0, δ) ⊂ ρ(T (b)) for some δ > 0. Then the sums

H1 + L(0,∞)
(
T (b)

)
, H1 + L[0,∞)

(
T (b)

)
(4.3)

are direct and closed.

Proof. The case H1 = {0} is trivial; so in the following we assume that H1 �= {0}. First 
observe that t(b)[x] < 0 for every x ∈ H1 \ {0} by Assumption (A3). Hence the first sum 
in (4.3) is direct. Assume that it is not closed. Then, by Lemma 4.3, there exist xn ∈ H1

and yn ∈ L(0,∞)(T (b)), n ∈ N, such that

‖xn‖ = 1 and ‖xn + yn‖ → 0 as n → ∞.

Set M0 := min σ(T (b)), which is negative because t(b)[x] < 0 for x ∈ H1 \ {0}. Let E be 
the spectral measure associated with the operator T (b). Then, for all n ∈ N, we have
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0 > t(b)[xn] =
0∫

M0

λ d
〈
E(λ)xn, xn

〉
+

∞∫
δ

λ d
〈
E(λ)xn, xn

〉

≥ M0
∥∥E(

(−∞, 0)
)
xn

∥∥2 + δ
∥∥E(

(0,∞)
)
xn

∥∥2
. (4.4)

Since
∥∥E(

(−∞, 0)
)
xn

∥∥ ≤
∥∥E(

(−∞, 0)
)
yn

∥∥ +
∥∥E(

(−∞, 0)
)
(xn + yn)

∥∥
=

∥∥E(
(−∞, 0)

)
(xn + yn)

∥∥
≤ ‖xn + yn‖ → 0 as n → ∞,∥∥E(

(0,∞)
)
xn

∥∥ ≥
∥∥E(

(0,∞)
)
yn

∥∥−
∥∥E(

(0,∞)
)
(xn + yn)

∥∥
≥ ‖yn‖ − ‖xn + yn‖ → 1 as n → ∞,

it follows that the right-hand side of (4.4) is positive for all sufficiently large n. This 
contradiction shows that the first sum in (4.3) is closed.

Since the second sum can be written as

H1 + L(0,∞)
(
T (b)

)
+ ker

(
T (b)

)
,

it is closed by the first part of the proof and the fact that ker(T (b)) is finite-dimensional; 
see, e.g. [11, Corollary 2.1.1]. Assume that the sum is not direct. Then there exist 
u ∈ H1, v ∈ L(0,∞)(T (b)), w ∈ ker(T (b)) such that u + v + w = 0 and v + w �= 0. 
Clearly, t(b)[v + w] ≥ 0. Assumption (A3) implies that t(a)[v + w] > 0, which contra-
dicts t(a)[u] ≤ 0. Hence also the second sum in (4.3) is direct and closed. �
Lemma 4.5. Let a, b ∈ [α, β] be such that a < b and (a, b) ⊂ ρ(T ). Moreover, let H1 ⊂ D

be a closed subspace such that t(a)[x] ≤ 0 for all x ∈ H1. Assume that

H = H1 � L(0,∞)
(
T (μ)

)
for all μ ∈ (a, b). (4.5)

Then

H = H1 � L[0,∞)
(
T (b)

)
. (4.6)

Proof. Since b ∈ σdis(T ) ∪ ρ(T ), the sum in (4.6) is direct by Lemma 4.4 and there 
exists δ > 0 such that [−δ, 0) ⊂ ρ(T (b)). It follows from [16, Theorem VI.5.10] that there 
exists ε > 0 such that 

[
−δ, − δ

3
]
⊂ ρ(T (μ)) for all μ ∈ [b − ε, b]. For such μ we have [

− δ
3 , 

δ
3
]
⊂ ρ

(
T (μ) + 2δ

3
)

and

L(− 2δ
3 ,∞)(T (μ)) = L(0,∞)

(
T (μ) + 2δ) = L(0,∞)

((
T (μ) + 2δ)−1

)
.
3 3
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By [16, Theorem VII.4.2] the operators T (μ) + 2δ
3 are uniformly bounded from below on 

[b − ε, b], say T (μ) + 2δ
3 � M . Then

σ

((
T (μ) + 2δ

3

)−1
)

⊂
(
−∞,

1
M

)
∪
[
0, 3

δ

)
.

If Γ is a circle passing through 1
M and 3

δ , then

L(0,∞)

((
T (μ) + 2δ

3

)−1
)

= ranP (μ)

where

P (μ) := − 1
2πi

∫
Γ

((
T (μ) + 2δ

3

)−1
− z

)−1

dz.

Since T is continuous in norm resolvent sense, the family of spectral projections P (μ) is 
uniformly continuous on the interval [b − ε, b].

Now let x0 ∈ H. We show that x0 is contained in the set on the right-hand side 
of (4.6). To this end, let bn ∈ (b − ε, b) for n ∈ N with bn → b. By (4.5) we can write

x0 = xn + yn with xn ∈ H1, yn ∈ L(0,∞)
(
T (bn)

)
.

Suppose that ‖yn‖ is not bounded. Without loss of generality assume that ‖yn‖ → ∞, 
which implies that ‖xn‖ → ∞. Clearly, P (bn)yn = yn since yn ∈ L(0,∞)(T (bn)) ⊂
L(− 2δ

3 ,∞)(T (bn)). Set ŷn := P (b)yn ∈ L[0,∞)(T (b)). Since δn := ‖P (bn) − P (b)‖ → 0 as 
n → ∞, we have∥∥∥∥ yn

‖xn‖
− ŷn

‖xn‖

∥∥∥∥ = 1
‖xn‖

∥∥(P (bn) − P (b)
)
yn

∥∥
≤ δn

‖yn‖
‖xn‖

≤ δn
‖x0‖ + ‖xn‖

‖xn‖
→ 0 as n → ∞.

This relation together with ‖xn‖ → ∞ yields

xn

‖xn‖
+ ŷn

‖xn‖
= x0

‖xn‖
−

(
yn

‖xn‖
− ŷn

‖xn‖

)
→ 0.

It follows from Lemma 4.3 that H1 � L[0,∞)(T (b)) is not closed, which contradicts 
Lemma 4.4. Hence the sequences (xn) and (yn) are uniformly bounded and therefore 
‖yn − ŷn‖ → 0. Setting

x0(n) := xn + P (b)yn ∈ H1 � L[0,∞)(T (b))
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we obtain x0−x0(n) =
(
P (bn) −P (b)

)
yn → 0. This implies that x0 ∈ H1 �L[0,∞)(T (b))

since the latter space is closed by Lemma 4.4. �
Lemma 4.6. Let a, μ0 ∈ [α, β) with a < μ0 and let H1 ⊂ D be a closed subspace such that 
t(a)[x] ≤ 0 for all x ∈ H1. Assume that

H = H1 � L[0,∞)
(
T (μ0)

)
. (4.7)

Then there exists an ε > 0 such that

H = H1 � ker
(
T (μ0)

)
� L(0,∞)

(
T (μ)

)
for all μ ∈ [μ0, μ0 + ε). (4.8)

Proof. First we prove that the sum on the right-hand side of (4.8) is direct and closed 
for all μ ∈ [μ0, β]. It follows from Lemma 4.4 that the sum H1 + L(0,∞)(T (μ)) is direct 
and closed. Since ker(T (μ0)) is finite-dimensional, the sum on the right-hand side of 
(4.8) is closed; see [11, Corollary 2.1.1]. Assume that it is not direct. Then there exist 
u ∈ H1, v ∈ ker(T (μ0)), w ∈ L(0,∞)(T (μ)) such that u + v + w = 0 and w �= 0. By 
Lemma 2.10 (ii) we have t(μ)[u + v] ≤ 0, which contradicts w ∈ L(0,∞)(T (μ)). Hence the 
sum on the right-hand side of (4.8) is direct and closed.

Next we show that there exists a K > 0 such that

x ∈ H1, y ∈ ker
(
T (μ0)

)
, w ∈ L(0,∞)

(
T (μ0)

)
, ‖x + y + w‖ = 1

=⇒ ‖w‖ ≤ K.
(4.9)

Assume that this is not true. Then there exist xn ∈ H1, yn ∈ ker(T (μ0)), wn ∈
L(0,∞)(T (μ0)) such that ‖xn + yn + wn‖ = 1 and ‖wn‖ → ∞. In this case also 
‖yn + wn‖ → ∞ and hence ‖xn‖ → ∞. Since

xn

‖xn‖
+ yn + wn

‖xn‖
= xn + yn + wn

‖xn‖
→ 0,

Lemma 4.3 implies that the sum H1 � L[0,∞)(T (μ0)) is not closed, which contradicts 
(4.7). Hence a K > 0 with the desired property exists.

Let P (μ) be the orthogonal projection onto L(0,∞)(T (μ)) for μ ∈ [μ0, β]. Similarly as 
in the proof of the previous lemma one shows that dμ := ‖P (μ) −P (μ0)‖ → 0 as μ ↘ μ0. 
Hence there exists an ε > 0 such that δμK < 1 for all μ ∈ [μ0, μ0+ε). We show that (4.8)
holds for all such μ. Assume that this is not the case. Then, for some μ ∈ [μ0, μ0 + ε)
there exists an x0 ∈ H with ‖x0‖ = 1 which is orthogonal to the right-hand side of (4.8). 
Since (4.7) is true by assumption, we can write

x0 = u + v + w with u ∈ H1, v ∈ ker
(
T (μ0)

)
, w ∈ L(0,∞)

(
T (μ0)

)
.

By (4.9) we have ‖w‖ ≤ K. Now set y := u + v + P (μ)w, which is contained in the 
right-hand side of (4.8). Then
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‖x0 − y‖ = ‖w − P (μ)w‖ =
∥∥(P (μ0) − P (μ)

)
w
∥∥ ≤ δμK < 1,

which is a contradiction to the facts that x0 ⊥ y and ‖x0‖ = 1. �
Proof of Theorem 4.1. Let λ̂1 < · · · < λ̂m be the eigenvalues of T in the interval (α, β)
not counted with multiplicities and set λ̂0 := α. For γ ∈ [α, β] consider the statement

H = L(−∞,0)
(
T (α)

)
� ker

(
T (λ̂1)

)
� . . . � ker

(
T (λ̂k)

)
� L[0,∞)

(
T (γ)

)
where k is such that λ̂1, . . . , λ̂k are the eigenvalues of T in (α, γ).

(4.10)

If (α, γ) contains no eigenvalues, then k = 0. For γ = α the statement is certainly true. 
We prove that (4.10) holds for all γ ∈ [α, β]. Assume that this is not the case and let 
γ0 := inf

{
γ ∈ [α, β] : (4.10) does not hold

}
. Set

H1 := L(−∞,0)
(
T (α)

)
� ker

(
T (λ̂1)

)
� . . . � ker

(
T (λ̂k)

)
where k is such that λ̂1, . . . , ̂λk are the eigenvalues of T in the interval (α, γ0). 
Lemma 2.10 (ii) implies that t(λ̂k)[x] ≤ 0 for all x ∈ H1.

It follows from Lemma 4.5 with a = λ̂k and b = γ0 that (4.10) holds also for γ = γ0. 
Now, if γ0 < β, then Lemma 4.6 yields a contradiction with the definition of γ0. Hence 
(4.10) holds for all γ ∈ [α, β]. For γ = β this is exactly the assertion of the theorem. �

In order to prove Proposition 4.2, we first need the following lemma.

Lemma 4.7. Let T be a holomorphic family of operators of type (B) defined on the complex 
domain U ⊂ C with closed forms t such that dom(t(λ)) = D for all λ ∈ U . Moreover, 
let x(λ) ∈ D for λ ∈ U such that x(·) is holomorphic.

(i) Assume that t(λ)[x(λ)] is locally bounded and let y0 ∈ D. Then t(λ)[x(λ), y0] is 
holomorphic in λ, x′(λ) ∈ D and

d
dλ

(
t(λ)[x(λ), y0]

)
= t′(λ)[x(λ), y0] + t(λ)[x′(λ), y0] (4.11)

for all λ ∈ U .
(ii) Assume that T (λ)x(λ) = ν(λ)x(λ) where ν is a scalar holomorphic function on U . 

Further, let λ0 ∈ U and assume that there exists a y0 ∈ dom(T (λ0)∗) such that 
T (λ0)∗y0 = ν(λ0)y0 and 〈x(λ0), y0〉 �= 0. Then

ν′(λ0) =
t′(λ0)

[
x(λ0), y0

]〈
x(λ0), y0

〉 . (4.12)

Item (ii) of this lemma can be applied, in particular, if T (λ0) is self-adjoint and one 
chooses y0 = x(λ0).
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Proof. (i) Fix λ0 ∈ U and choose M ∈ R such that Re t(λ0) +M � 0. According to [16, 
(VII.4.4)] the form t can be written as

t(λ)[u, v] =
〈
T0(λ)Gu,Gv

〉
−M〈u, v〉, u, v ∈ D,

where T0 is a holomorphic operator function whose values are bounded operators and 
G := (ReT (λ0) + M)1/2.

Now set y(λ) := Gx(λ) for λ ∈ U . It follows from [16, (VII.4.7)] that, for each compact 
subset U0 of U with λ0 ∈ U0 there exists C > 0 such that

‖y(λ)‖2 =
〈
Gx(λ), Gx(λ)

〉
= Re t(λ0)[x(λ)] + M‖x(λ)‖2

≤ C
∣∣t(λ)[x(λ)]

∣∣ + M‖x(λ)‖2

for all λ ∈ U0. Since the last expression is bounded on U0 by assumption, it follows that 
y(λ) is locally bounded. For u ∈ D, the scalar function

〈
y(λ), u

〉
=

〈
Gx(λ), u

〉
=

〈
x(λ), Gu

〉
is holomorphic in λ. Hence y(λ) is strongly holomorphic in λ; see, e.g. [16, §VII.1.1]. 
Moreover, 〈y′(λ), u〉 = 〈x′(λ), Gu〉 for all u ∈ D = domG, which implies that x′(λ) ∈
domG = D and y′(λ) = Gx′(λ).

We conclude that the function

t(λ)[x(λ), y0] =
〈
T0(λ)y(λ), Gy0

〉
−M

〈
x(λ), y0

〉
is holomorphic and that

d
dλ

(
t(λ)[x(λ), y0]

)
= d

dλ

(〈
T0(λ)y(λ), Gy0

〉
−M

〈
x(λ), y0

〉)
=

〈
T ′

0(λ)y(λ), Gy0
〉

+
〈
T0(λ)y′(λ), Gy0

〉
−M

〈
x′(λ), y0

〉
=

〈
T ′

0(λ)Gx(λ), Gy0
〉

+
〈
T0(λ)Gx′(λ), Gy0

〉
−M

〈
x′(λ), y0

〉
= t′(λ)[x(λ), y0] + t(λ)[x′(λ), y0],

which shows (4.11).
(ii) The expression t(λ)[x(λ)] = ν(λ)‖x(λ)‖2 is locally bounded in λ. Hence we can ap-

ply item (i) of this lemma to the derivative of the equality t(λ)[x(λ), y0] = ν(λ)〈x(λ), y0〉, 
which, for λ = λ0, yields

t′(λ0)
[
x(λ0), y0

]
+ t(λ0)

[
x′(λ0), y0

]
= ν′(λ0)

〈
x(λ0), y0

〉
+ ν(λ0)

〈
x′(λ0), y0

〉
. (4.13)

The second term on the left-hand side is equal to
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〈
x′(λ0), T (λ0)∗y0

〉
=

〈
x′(λ0), ν(λ0)y0

〉
= ν(λ0)

〈
x′(λ0), y0

〉
.

Hence (4.13) yields the desired result. �
Proof of Proposition 4.2. Let μ ∈ (α, β). The assumption σess(T ) ∩ (α, β) = ∅ implies 
that there exists an ε > 0 such that σ(T (μ)) ∩ (−ε, ε) ⊂ {0} and n := dim ker(T (μ)) is 
finite. Further, there exists a δε > 0 such that, for all λ with |λ −μ| < δε the intersection 
σ(T (λ)) ∩(ε, ε) consists only of eigenvalues of finite multiplicity with total multiplicity n. 
These eigenvalues can be enumerated such that they are analytic functions of λ. Let ν(λ)
be such an eigenvalue curve with a zero at λ0 (i.e. λ0 is an eigenvalue of T ), extend it 
also to a complex neighbourhood of λ0 and let x(λ) be corresponding eigenvectors, which 
can be chosen to depend analytically on λ; see [16, §§VII.6.2 and II.6.2].

Now we can apply Lemma 4.7 (ii) with y0 = x(λ0), which yields

ν′(λ0) = t′(λ0)[x(λ0)]
‖x(λ0)‖2 .

Since, by Assumption (A3)′, this expression is negative, eigenvalue curves can cross the 
λ-axis only in one direction. Therefore T has at most N eigenvalues in [μ − δ, μ + δ], and 
hence the eigenvalues cannot accumulate at μ. �

5. Variational principles for norm resolvent continuous operator functions

In this section we prove that under stronger continuity assumptions on the operator 
function we have equality in the variational principle from Theorem 2.3.

Theorem 5.1. Let Δ ⊂ R be an interval with right endpoint β ∈ R ∪ {∞} and let T
be an operator function defined on Δ which satisfies Assumptions (A1)–(A3) on Δ, is 
continuous in the norm resolvent sense on Δ, and T (λ) is bounded from below for each 
λ ∈ Δ. Moreover, let p be a generalised Rayleigh functional for T on Δ, let γ ∈ ρ(T ) ∩Δ
with γ < β, let M+

γ be defined as in Definition 2.1 and let λe be as in (2.6).
Assume that the spectrum of T in (γ, λe) has no accumulation point in [γ, λe), i.e. 

σ(T ) ∩ [γ, λe) is empty or consists of a finite or infinite non-decreasing sequence of 
eigenvalues (λn)Nn=1 with N ∈ N ∪ {∞}, counted according to their multiplicities, which 
can accumulate at most at λe.

If σ(T ) ∩ (γ, λe) �= ∅, then

λn = sup
M∈M+

γ

sup
L⊂M

inf
x∈M\{0}

p(x), n ∈ N, n ≤ N. (5.1)

dim L=n−1 x⊥L
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Moreover, if, in addition, T satisfies the condition (VM−), N is finite and σess(T ) ∩
(γ, β) �= ∅, then

λe = sup
M∈M+

γ

sup
L⊂M

dim L=n−1

inf
x∈M\{0}

x⊥L

p(x), n > N. (5.2)

Remark 5.2. If T is a holomorphic family of type (B) in a neighbourhood of Δ and 
Assumption (A3)′ is satisfied, then one does not have to assume that the eigenvalues 
cannot accumulate in [γ, λe), but this follows from Proposition 4.2. Theorem 5.1 and 
Proposition 4.2 can be applied, e.g. to operator polynomials and Schur complements of 
certain block operator matrices; for the latter see [24].

Proof. The inequalities ‘≥’ in (5.1) and (5.2) follow from Theorem 2.3. We first prove 
‘≤’ in (5.1). Let 1 ≤ n ≤ N . It is sufficient to find a subspace M ∈ M+

γ and a subspace 
L ⊂ M with dimL = n − 1 such that

inf
x∈M\{0}

x⊥L

p(x) ≥ λn. (5.3)

Let m = max{k ∈ N : λk = λn} and choose μ > λn such that (λn, μ] ⊂ ρ(T ). Moreover, 
let u1, . . . , um be linearly independent eigenvectors of T corresponding to the eigenvalues 
λ1, . . . λm (see Lemma 2.11). Consider the subspace

M := span{u1, . . . , um} +
(
L(0,∞)(T (μ)) ∩D

)
.

From Lemma 2.10 (i) we obtain that t(γ)[x] ≥ 0 for all x ∈ M. Since L(−∞,0)(T (γ)) ⊂ D

and uk ∈ D, k = 1, . . . , m, Theorem 4.1 implies that the following decomposition of D
is valid:

D = L(−∞,0)
(
T (γ)

)
� span{u1, . . . , um} �

(
L(0,∞)(T (μ)) ∩D

)
. (5.4)

It follows from this decomposition that M is maximal t(γ)-non-negative, i.e. M ∈ M+
γ . 

Let P be the orthogonal projection in H onto

K := span{un, . . . , um} + L(0,∞)
(
T (μ)

)
and set

L := (I − P )M = (I − P ) span{u1, . . . , un−1}.

Since

ran(I − P ) = K⊥ ⊂ L(−∞,0)
(
T (μ)

)
⊂ dom

(
T (μ)

)
⊂ D
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and

(I − P )uk = uk − Puk ∈ M + K, k = 1, . . . , n− 1,

we have L ⊂ D ∩ (M + K) = M. We show that the mapping I − P is injec-
tive on span{u1, . . . , un−1}. Assume that this is not the case. Then there exists a 
u ∈ span{u1, . . . , un−1}, u �= 0, such that u ∈ ker(I − P ) = K, i.e. there exist 
α1, . . . , αm ∈ C and x ∈ L(0,∞)(T (μ)) ∩D such that

u = α1u1 + . . . + αn−1un−1 = αnun + . . . + αmum + x.

Since the sum in (5.4) is direct, we have x = 0, and therefore α1 = . . . = αm = 0 because 
of the linear independence of u1, . . . , um. Hence I−P is injective on span{u1, . . . , un−1}, 
which shows that dimL = n − 1.

Now let x ∈ M \ {0} such that x ⊥ L = (I − P )M. Then x ∈ D, and the relation 
x = Px + (I − P )x implies that

‖x‖2 = 〈Px, x〉 + 〈(I − P )x, x〉 = ‖Px‖2,

which shows that x ∈ ranP = K. It follows from Lemma 2.10 (i) that t(λn)[x] ≥ 0, which 
proves (5.3).

In order to prove (5.2), assume that N is finite and let n > N . Moreover, let 
μ ∈ (λN , λe) be arbitrary and P be the orthogonal projection in H onto L(0,∞)(T (μ)). 
Similarly to the first part of the proof we can choose

M := span{u1, . . . , uN} +
(
L(0,∞)(T (μ)) ∩D

)
,

which is in M+
γ . The space L′ := (I − P )M is an N -dimensional subspace of M, which 

can be seen as above. Extend L′ to an (n − 1)-dimensional subspace L of M. Then

inf
x∈M\{0}

x⊥L

p(x) ≥ μ,

which shows (5.2) since μ ∈ (λN , λe) was arbitrary. �
Example 5.3. Let C be a self-adjoint operator in a Hilbert space H that is bounded from 
below, let c be the corresponding quadratic form, and assume that 0 ∈ ρ(C). Moreover, 
let b be a symmetric non-positive quadratic form that is c-bounded with relative bound 
0, i.e. dom(c) ⊂ dom(b) and for each b > 0 there exists an a ≥ 0 such that

∣∣b[x]
∣∣ ≤ a‖x‖2 + b

∣∣c[x]
∣∣, x ∈ dom(c).

For instance, b can be a form corresponding to a C-compact operator. Then the form

t(λ)[x, y] := −λ2〈x, y〉 + λb[x, y] + c[x, y], x, y ∈ dom(c),
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is sectorial and closed for every λ ∈ C and hence defines an m-sectorial operator T (λ). 
Clearly, T is a holomorphic family of type (B) on C and Assumptions (A1) and (A2) are 
satisfied on Δ := [0, ∞).

For x ∈ D \{0} denote by p±(x) the solutions of t(λ)[x] = 0 with p−(x) ≤ p+(x) if the 
solutions are real, and set p±(x) := −∞ otherwise. Since b[x] ≤ 0, we have p−(x) ≤ 0 for 
x ∈ D \{0}, Assumption (A3) is satisfied and p+ is a generalised Rayleigh functional for T
on Δ. Hence we can apply Theorem 5.1 together with Proposition 4.2 (see Remark 5.2) 
with γ = 0, which yields a characterisation of the eigenvalues λ1 ≤ λ2 ≤ · · · in the 
interval (0, min(σess(T ) ∩ (0, ∞))), given by the formula in (5.1) with p+ instead of p and 
γ = 0.

We can compare these eigenvalues with the eigenvalues of the operator polynomial 
T0(λ) = −λ2+C, which satisfies also all assumptions of Theorem 5.1. The corresponding 
generalised Rayleigh functional is p̊+(x) =

√
c[x]/‖x‖ if c[x] ≥ 0. Since T (0) = T0(0), 

the maximal non-negative subspaces are the same for T and T0 at γ = 0. Denote by 
μ1 ≤ μ2 ≤ · · · the eigenvalues of C in the interval (0, min(σess(C) ∩ (0, ∞))). Since 
p+(x) ≤ p̊+(x), we obtain the inequalities λn ≤ √

μn.
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