Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

MEMS sensor-based monitoring system for engineered geological disposal facilities

Yang, Wenbin and Lunn, Rebecca and Tarantino, Alessandro (2015) MEMS sensor-based monitoring system for engineered geological disposal facilities. Mineralogical Magazine, 79 (6). pp. 1475-1483. ISSN 0026-461X

Text (Yang-etal-MM2015-MEMS-sensor-based-monitoring-system-for-engineered-geological)
Accepted Author Manuscript

Download (7MB)| Preview


    The design of a novel MEMS (Micro-Electro-Mechanical System) sensor-based monitoring system is presented in this article for the in-situ monitoring of the conditions (temperature, relative humidity) of an engineered bentonite barrier for the underground disposal of radioactive waste in a geological disposal facility (GDF). A first prototype of the monitoring system incorporating multiple state-of-the-art MEMS sensors has been developed on a PCB-based (Printed Circuit Board) structure, in order to measure the variation of temperature and relative humidity inside a cylindrical bentonite block during the hydration process. The monitoring system comprises of separate sensor boards, the microcontroller-equipped interface board, and the software user interface in Labview environment. One of the main design priorities is to reduce the size of the embedded sensors in order to minimize their influence on the hydro-mechanical response of the bentonite block. The sensor boards are encapsulated in different manners to protect them from moisture, chemical corrosion and mechanical shocks. The sensor system has been tested and calibrated in the temperature range between -20°C and 120°C, and at different relative humidity levels implemented by saturated salt solutions in enclosed containers. Test results demonstrate that the sensors have shown good functionality and robustness in harsh test environments such as high temperature and high humidity. Both temperature and relative humidity sensors have shown satisfactory precision level and temporal stability, which are in good accordance with the design specification of these devices.