Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

μLED-based single-wavelength bi-directional POF link with 10 Gb/s aggregate data rate

Li, Xin and Bamiedakis, Nikolaos and Wei, Jinlong and McKendry, Jonathan J. D. and Xie, Enyuan and Ferreira, Ricardo and Gu, Erdan and Dawson, Martin D. and Penty, Richard V. and White, Ian H. (2015) μLED-based single-wavelength bi-directional POF link with 10 Gb/s aggregate data rate. Journal of Lightwave Technology, 33 (17). pp. 3571-3576. ISSN 0733-8724

[img]
Preview
Text (Li-etal-JLT-2015-LED-based-single-wavelength-bi-directional-POF-link)
Li_etal_JLT_2015_LED_based_single_wavelength_bi_directional_POF_link.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

We report record 10 Gb/s bi-directional data transmission over a single 10 m SI-POF, by employing blue microlight-emitting diodes (μLEDs) at a single wavelength, APD receivers, and a PAM-32 modulation scheme. The implementation of 10 Gb/s LED-POF links takes advantage of the bi-directional configuration, which doubles the overall channel capacity, and APDs, which provide an enhanced link power budget owing to their improved sensitivity compared with conventional p-i-n photodiodes. Moreover, the high spectral efficiency of the PAM-32 modulation scheme employed, together with equalization techniques, enable the full utilization of the link bandwidth and the transmission of data rates higher than those obtained with conventional on–off keying. Simulation and experimental results demonstrate the feasibility of such a bi-directional link, and simultaneous 5 Gb/s data transmission is realized in each direction, achieving an aggregate data rate of 10 Gb/s with a BER textless 10−3. The crosstalk penalty between the two directions of the link is measured to be less than 0.5 dB.