Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111)

Eder, Georg and Smith, Emily F. and Cebula, Izabela and Heckl, Wolfgang M. and Beton, Peter H. and Lackinger, Markus (2013) Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111). ACS Nano, 7 (4). pp. 3014-3021. ISSN 1936-0851

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The polymerization of 1,3,5-tri(4-iodophenyl)benzene (TIPB) on Au(111) through covalent aryl-aryl coupling is accomplished using a solution-based approach and investigated by scanning tunneling microscopy. Drop-casting of the TIPB monomer onto Au(111) at room temperature results in poorly ordered noncovalent arrangements of molecules and partial dehalogenation. However, drop-casting on a preheated Au(111) substrate yields various topologically distinct covalent aggregates and networks. Interestingly, some of these covalent nanostructures do not adsorb directly on the Au(111) surface, but are loosely bound to a disordered layer of a mixture of chemisorbed iodine and molecules, a conclusion that is drawn from STM data and supported by X-ray photoelectron spectroscopy. We argue that the gold surface becomes covered by a strongly chemisorbed iodine monolayer which eventually inhibits further polymerization.