Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Investigation of facet-dependent InGaN growth for core-shell LEDs

Gîrgel, Ionut and Edwards, Paul R. and Le Boulbar, Emmanuel and Allsopp, Duncan W. E. and Martin, Robert W. and Shields, Philip A. (2015) Investigation of facet-dependent InGaN growth for core-shell LEDs. Proceedings of SPIE, 9363. ISSN 0277-786X

[img]
Preview
Text (Girgel-etal-SPIE-2015-Investigation-of-facet-dependent-InGaN-growth)
Girgel_etal_SPIE_2015_Investigation_of_facet_dependent_InGaN_growth.pdf - Accepted Author Manuscript

Download (680kB) | Preview

Abstract

In this work we used vertically aligned GaN nanowires with well-defined crystal facets, i.e. the {11-20} a-plane, {10-10} m-plane, (0001) c-plane and {1-101} semi-polar planes, to investigate the impact of MOVPE reactor parameters on the characteristics of an InGaN layer. The morphology and optical characteristics of the InGaN layers grown of each facet were investigated by cathodoluminescence (CL) hyperspectral imaging and scanning electron microscopy (SEM). The influence of reactor parameters on growth rate and alloy fraction were determined and compared. The study revealed that pressure can have an important impact on the incorporation of InN on the {10-10} m-plane facets. The growth performed at 750°C and 100mbar led to a homogeneous high InN fraction of 25% on the {10-10} facets of the nanowires. This work suggests homogeneous good quality GaN/InGaN core-shell structure could be grown in the near future.