Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

ATP as a cotransmitter in the autonomic nervous system

Kennedy, Charles (2015) ATP as a cotransmitter in the autonomic nervous system. Autonomic Neuroscience: Basic and Clinical, 191. pp. 2-15. ISSN 1566-0702

[img]
Preview
Text (Kennedy-ANBC-2015-ATP-as-a-cotransmitter-in-the-autonomic-nervous)
Kennedy_ANBC_2015_ATP_as_a_cotransmitter_in_the_autonomic_nervous.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

The role of adenosine 5'-triphosphate (ATP) as a major intracellular energy source is well-established. In addition, ATP and related nucleotides have widespread extracellular actions via the ionotropic P2X receptors (ligand-gated cation channels) and metabotropic P2Y receptors (G protein-coupled receptors). Numerous experimental techniques, including myography, electrophysiology and biochemical measurement of neurotransmitter release, have been used to show that ATP has two major roles as an excitatory cotransmitter from autonomic nerves; 1) It is costored with noradrenaline in synaptic vesicles in postganglionic sympathetic nerves innervating smooth muscle preparations, such as the vas deferens and most arteries. When coreleased with noradrenaline, ATP acts at postjunctional P2X1 receptors to evoke depolarisation, Ca2+ influx, Ca2+ sensitisation and contraction. 2) ATP is also coreleased with acetylcholine from postganglionic parasympathetic nerves innervating the urinary bladder and again acts at postjunctional P2X1 receptors, and possibly also a P2X1+4 heteromer, to elicit smooth muscle contraction. In both systems the neurotransmitter actions of ATP are terminated by dephosphorylation by extracellular, membrane-bound enzymes and soluble nucleotidases released from postganglionic nerves. There are indications of an increased contribution of ATP to control of blood pressure in hypertension, but further research is needed to clarify this possibility. More promising is the upregulation of P2X receptors in dysfunctional bladder, including interstitial cystitis, idiopathic detrusor instability and overactive bladder syndrome. Consequently, these roles of ATP are of great therapeutic interest and are increasingly being targeted by pharmaceutical companies.