Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Aging and the number sense : preserved basic non-symbolic numerical processing and enhanced basic symbolic processing

Norris, Jade E. and McGeown, William J. and Guerrini, Chiara and Castronovo, Julie (2015) Aging and the number sense : preserved basic non-symbolic numerical processing and enhanced basic symbolic processing. Frontiers in Psychology: Cognitive Science, 6. ISSN 1664-1078

[img]
Preview
Text (Norris-etal-FIP-2015-Aging-and-the-number-sense-preserved-basic-non-symbolic-numerical-processing)
Norris_etal_FIP_2015_Aging_and_the_number_sense_preserved_basic_non_symbolic_numerical_processing.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (902kB)| Preview

    Abstract

    Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the number sense, is not well-known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25) and 25 older adults (60-77) participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly [RTs, accuracy and Weber fractions (w)]. All participants showed decreased non-symbolic acuity (accuracy and w) in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive, and embedded number sense.