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View-Popularity-Driven Joint Source and Channel
Coding of View and Rate Scalable Multi-View Video

Jacob Chakareski, Vladan Velisavljevié, and Vladimir Stankovié¢

Abstract—We study the scenario of multicasting multi-view
video content, recorded in the video plus depth format, to a
collection of heterogeneous clients featuring Internet access links
of diverse packet loss and transmission bandwidth values. We de-
sign a popularity-aware joint source-channel coding optimization
framework that allocates source and channel coding rates to the
captured content, such that the aggregate video quality of the
reconstructed content across the client population is maximized,
for the given packet loss and bandwidth characteristics of the
clients and their view selection preferences. The source coding
component of our framework features a procedure for generating
a view and rate embedded bitstream that is optimally decodable
at multiple data rates and accounts for the different popularity
of diverse video perspectives of the scene of interest, among
the clients. The channel coding component of our framework
comprises an expanding-window rateless coding procedure that
optimally allocates parity protection bits to the source encoded
layers, in order to address packet loss across the unreliable
client access links. We develop an optimization method that
jointly computes the source and channel coding decisions of our
framework, and also design a fast local-search-based solution that
exhibits a negligible performance loss relative to the full optimiza-
tion. We carry out comprehensive simulation experiments and
demonstrate significant performance gains over competitive state-
of-the-art methods (based on H.264/AVC and network coding,
and H.264/SVC and our own channel coding procedure), across
different scenario settings and parameter values.

Keywords—Joint source-channel multi-view video coding, view
and rate scalable encoding, rateless codes, video multicast.

I. INTRODUCTION

Multi-view video (MVV) has emerged as an exciting novel
paradigm for interactive multimedia that has the potential
to significantly augment our capacity to communicate and
collaborate online. It is expected that MVV will usher in a
new age of immersive communication that will affect our
society broadly, by leading to innovative applications of higher
productivity and quality of experience in entertainment, remote
control and monitoring, telecommuting and telemedicine, and
many other areas [1]. In brief, MVV enhances the sensation
of immersion in the remote scene for the user, by allowing it
to switch to different viewpoints dynamically [2].
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Electronic and Electrical Engineering, the University of Strathclyde, Glasgow,
UK.

Compared to its single-camera counterpart, MVV is char-
acterized by an N-fold bandwidth and complexity expansion,
since content needs to be captured from multiple perspectives
simultaneously. To increase transmission efficiency, multicast
delivery of such a content may be utilized, when multiple users
may be interested to visually interact with the same scene
simultaneously. This is the subject we study here.

In particular, we consider a scenario where MVV content is
streamed to a collection of heterogeneous clients, characterized
by different access link characteristics (bandwidth and packet
loss). To lower the complexity of the system and improve
its efficiency, we replace the individual (unicast) connections
to every client with a single multicast distribution tree, as
illustrated in Figure 1. To construct a single content distribution
stream that can be reconstructed at every client at optimal
video quality, at different data rates, we formulate a novel
popularity-driven view and rate scalable encoding procedure
that accounts for the different view selection preferences of the
clients. Our source coding strategy is inspired by our recent
work on view-rate scalable unicast multi-view streaming [3].
Furthermore, to combat packet loss on the access links of the
clients, we map the view and rate scalable source stream onto
optimal channel coding protection levels that we integrate into
the source encoding process. Our joint source-channel coding
approach delivers gains over competing reference methods, as
our experiments show. In brief, our main contributions are

e A viewpoint-popularity-aware source coding for view
and rate scalable multi-view video multicast that extends
our prior work in [3] to rate-distortion optimized em-
bedded source coding for multiple heterogeneous target
client classes;

e A joint source-channel coding scheme that exploits
rateless expanding-window random linear coding for
unequal packet erasure protection and embedded source
coding for reliable multi-view video multicast to het-
erogenous clients;

e A framework for optimizing the source and channel
coding parameters under transmission rate constraints
given view popularity distribution;

e Evaluation of the robustness of the proposed system in
different application scenarios and comparison with prior
source-channel coding methods, demonstrating consider-
able advances over the state-of-the-art.

The rest of the paper is organized as follows. We briefly
describe the video plus depth (VpD) multi-view format that
we use and review related work in Section II. In Section III,
we describe the source and channel coding components of our
framework. In Section IV, we formulate two constrained opti-
mization problems of computing source and channel encoding
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Fig. 1.  Scalable multicast to multi-view clients that receive appropriate
amounts of data (D) and parity (P) packets sent over the tree, to reconstruct
desired viewpoints at optimal video quality.

rates such that the aggregate video quality over the client
population is maximized, whereas in Section V, we evaluate
the performance of our system and compare against reference
methods. Finally, we conclude in Section VI.

II. BACKGROUND
A. Video plus depth MVV

MVYV features N captured viewpoints (video signals) to
which a user can simultaneously switch. Observing the remote
scene from other (virtual) viewpoints can be achieved via view
interpolation. To this end, depth signals are recorded for every
camera location using time-of-flight cameras [4]. In essence, a
depth signal measures the distance of each object in the scene
from the camera location. A virtual viewpoint is synthesized
using the depth and video signals for the two nearest captured
viewpoints using a procedure known as 3D warping' [5]. In
general, depth signals can better handle scenery with multiple
objects compared to mesh-based models that require dense
image sampling around a single object.

B. Source coding

The study in [6] considered encoding VpD MVV with a
single rate constraint known ahead of time. We face a more
challenging problem here, since our clients are bandwidth
heterogenous. This intuitively calls for a scalable coding
solution that will deliver video quality proportional to the
downlink bandwidth. A scalable or layered bitstream starts
with a base layer and continues with a set of enhancement
layers of progressively lower importance. H.264/SVC [7] is
a recent scalable extension of the H.264/AVC video coding
standard [8] that provides efficient scalability functionalities,
at competitive video quality. Quality scalability, the focus of
our paper, enables the use of a single stream to describe video
content at different fidelity levels. In this way, the receivers
that only receive a part of the stream can still reconstruct
the content, though at lower quality. The more enhancement

'Direct interpolation from closest video signals exhibits poor quality, since
it cannot account for the scene’s 3D geometry.

layers a receiver decodes the higher its reconstruction video
quality becomes. State-of-the-art wavelet-based scalable video
coders (see [9] and the references therein) that use motion-
compensated temporal filtering usually provide better quality
scalability features than SVC (e.g. fine rate granularity), but
suffer from performance loss. However, a recent JPEG2000-
compatible scalable wavelet-based codec proposed in [10]
provides results close to those of H.264/SVC.

In [11], loss-resilient source coding of VpD MVYV is studied,
however, with no channel coding considerations. Similarly,
[12] considers multicast of MVYV, where the captured video
and depth signals are SVC encoded, and each client is served
two reference video and depth signals. It is shown that finding
the optimal subset of scalable video and depth signal layers to
transmit for each reference view, which maximize the clients’
received video quality is an NP-complete problem. In contrast
to our work, [12] uses only two views, compresses each
view with SVC, and does not consider channel error control.
Finally, in our earlier work [3] we have studied the problem
of delivery of scalable multi-view content to a single user.
The present paper extends our source coding framework from
[3] to view-popularity-driven joint source-channel coding for
scalable multi-view multicast to a collection of clients, where
it is optimally matched with an error protection transmission
method that we design. Here, we integrate the source coding,
channel coding, and client heterogeneity and view interaction
aspects into one unifying framework that aims to optimize the
operation of the system end-to-end.

C. Channel coding

Random linear codes (RLC) are a class of rateless codes
that are becoming increasingly popular for erasure protection
over wireless networks due to their simple implementation,
flexibility, and natural extension to multi-hop setups [13].
RLC are flexible for adaptation to video content and varying
channel conditions via unequal error protection (UEP). In [14],
the popular expanding window fountain (EWF) coding UEP
approach [15] is applied to RLC, leading to an EW-RLC design
based on the idea of creating a set of nested windows over the
source data block.

D. Source-channel coding

UEP EW-RLC have been used for transmission of single-
camera video, e.g., in [16], where EW-RLC are proposed
as an application-layer forward error protection solution for
transmission of H.264 AVC video over DVB-H networks.
In addition, in [17], RLC is proposed for transmission of
H.264 SVC video over LTE networks at the MAC layer, as
a replacement of traditional ARQ. In [18], prioritized video
streaming over lossy overlay networks using UEP-based RLC
is proposed for single-view video. In [19], depth maps are used
to recover lost texture maps for WWAN video streaming and
source-channel optimization framework is formed to allocate
the optimal amount of redundancy to texture and depth maps.

In [20], 3D video transmission over lossy networks is
proposed that allocates different priorities to colour and depth



map stream based on their importance for the reconstruction
of the content. In [21], a cross-layer optimization framework
for scalable VpD video streaming is proposed with H.264
SVC for source coding and Reed-Solomon codes for packet-
level erasure protection. In [22], joint source-channel coding
of VpD content is considered, where H.264 AVC is used for
compression of texture and depth information, while turbo
codes are used for error protection. In [23], VpD video is
protected using prioritized network coding [18] and multicast
to heterogeneous clients in a multi-hop network. The optimiza-
tion problem is posed taking into account different channel
conditions, as well as video distortion and view popularity
characteristics, and solved using the hill-climbing algorithm
from [24]. Actual views are source encoded independently
in an incremental fashion to form quality-scalable layers. In
contrast to this work, in our system a layer can comprise
multiple encoded viewpoints, at the same time, whose quality
gradually improves from the lowest to the highest layer. This
offers a considerably improved performance, as it enables a
higher system flexibility and more effective view synthesis at
the decoder, as observed in our experiments.

III. MVV MULTICAST SYSTEM
A. View and rate scalable encoding

For encoding the captured MVV content, we extend the
scalable coder developed in [3] that provides joint view and
rate scalability. The coder generates an embedded bitstream
that features video and depth signals of captured viewpoints.
The encoding used for the selected views is based on shape-
adaptive wavelets [25] followed by SPIHT [26] applied to the
difference between the original frame and its prediction, for
the same view. This prediction can be either (i) the previously
quantized version of the same frame or (ii) a synthesized frame
obtained using view interpolation techniques (e.g., depth-
image-based rendering) with nearest left and right previously
encoded views as reference. In (i), an already compressed
view is refined using the best predictor thus achieving rate
scalability. In turn, in (ii), a new captured view is inserted into
the set of compressed views providing therefore view scala-
bility. For each coding layer, the coder optimizes the coding
strategy by selecting the best choice between (i) and (ii) for
the best encoding view such that rate-distortion performance
is maximized.

B. Forward error correction

Our EW-RLC scheme, illustrated in Figure 2, starts by
selecting a window from which the encoded symbol will be
generated. The window selection is independently performed
for each encoded symbol and is governed by window selection
probabilities A = [A1,..., AL] that are assigned ahead of time
and known at both the encoder and decoder. Their selection is
carried out according to the importance of the different source
symbols and the available data rate. Note that ZZL Ai =1

[14] derives an expression for the decoding probability of
window [. For completeness, we include here the main aspects
of the formulation. Let K; be the symbol length of window [,
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Fig. 2. EW-RLC: A scalable source is organized into L embedded windows
of progressively increasing size. Window k comprises windows 1, ..., k, for
k = 1,...,L. Each coded symbol is generated using RLC over a selected
window, where \j, denotes the probability of selecting window k. One window
contains one or more source layers.

and let n; denote the number of coded symbols, generated over
window [, received by a client. Thus, n = (nq,...,nz) de-
notes the vector of received coded symbols, for every window
l=1,...,L,where N =}, ny is the total number of received
coded symbols. Then, the probability that a received sequence
of coded symbols of length N features the distribution of
received coded symbols per window specified by n is governed
by the multinomial probability mass function?, i.e.,

N!
AR (1

ni!---ngp!

PA,N(H) =

Given (1), the probability of successful decoding of window
l can be computed as

P(N)= >
(ni,...,nr):

0<ni<...<np <N
Zlnl:N

Py, n(n)P(N|n), 2

where P;(N|n) denotes the probability that window [ can be
decoded, given that the received sequence can be described by
n. It can be shown that P;(N|n) can be upper bounded by
I(n; > K; — K;—1), where Ky = 0 and I(-) represents the
indicator function that is equal to 1, if its argument is true,
and zero, otherwise. An expression for P;(/N|n) can be found
in [14], where it is further shown that I(n; > K;— K;_1) also
represents a good estimate of P;(N|n).

C. Client population & view selection

There are N. client classes characterized with distinct
bandwidth and packet loss pairs. Let 7; denote the fraction
of the client population associated with class j. Let V =
{v1,...,un} denote the discrete set of captured viewpoints>.
We quantize the continuum of prospective views [v1, vn] that
a user can select to watch into a discrete set ¥V D V. Note

2 Assuming independent channel symbol erasures during transmission.

3Note that V represents a mathematical abstraction that facilitates our
analysis. Whenever we refer to encoding viewpoint v; henceforth, we have in
mind the encoding of the corresponding video frames captured from v, .



that these views in 1 may consist of both captured and virtual
(i.e. synthesized) views. Now, let w; denote the fraction of
clients accessing viewpoint V; € V. The factor w; can be
considered as the popularity of V; over the client population
or the likelihood that a client selects V; to watch.

We consider that the provider of the multi-view video
application will have available the aggregate client access link
packet loss and bandwidth characteristics described above.
That is because today IP multicast video services are typically
delivered by the same ISP providers through which the clients
connect to the Internet*. An ISP provider will have such
information readily available off-line and can easily update it
dynamically, by monitoring data packets entering its network
through an access link. Moreover, view switching capability
is established at the ingress router through which clients
connect to the Internet, at which point local statistics for
the views’ popularity can be collected, as well, before they
are forwarded back to the encoding multicast server in an
aggregated form. Thus, feedback implosion overwhelming the
IP network cannot occur, as the individual view switching
requests are not propagated further upstream.

IV. SOURCE-CHANNEL CODING

A. Preliminaries

The content is encoded progressively into L source layers.
Let RO = (Rgl), e Rl(l)) denote the vector of encoding data
rates cumulatively assigned to layers 1,. .., 1 by the time layer
I is encoded. Similarly, let V() = (Vél),...,Vél)) denote
the vector of captured viewpoint sets cumulatively represented
in the scalable bitstream by the time layer £ = 1,...,[ is
encoded. By construction, it holds that Vél) - Vé”l). In
the following, we will address two optimization problems of
interest, in the context of the scenario we examine.

B. Source rate allocation

We are interested in minimizing the expected video
distortion over the client population, computed as
> w; Dy, (RE) ' VE)) such that the base layer encoding rate

RgL) and the aggregate encoding rate of the content Zlel RI(L)
meet required minimum and maximum transmission rate
constraints, Chin and Cax, associated with the multicast
session. The latter are motivated by the needs to ensure
minimum video quality delivered to every client and match
the available serving rate for the session. Note that we consider
that the clients are characterized by heterogenous bandwidth
values only, in this case. Dy, (R, V(F)) represents the
distortion of view V; € V, given the rate allocation and view
coding selection decisions for all L layers’. Formally, we aim

“4For example, FiOS IPTV by Verizon and Xfinity IPTV by Comcast.
SThat is, Dy, (R(L),V(L)) represents the error of reconstructing view-
point V; from the compressed bitstream, given R and VL),

to solve

; . (L) v(L)
R Z w; Dy, (R, Vi), 3)

L
S.t. Cmin S RgL); ZRZ(L) S Cmax .
=1

The viewpoint distortion in (3) is computed as an integral
value over all clients watching that view. Concretely,

Dy,

7

Nc
(RE, V) ="y, D{, RP,VE) @)
j=1

where ~; is the fraction of clients in class j, and
Dy, (R, V(H)) s the reconstruction error of viewpoint i
for clients of that class, given R(") and V%), We compute
Dy, (R, V() via an expression derived in [3] that takes
advantage of an accurate synthesized view distortion model
that we derived in [27,28]. Without loss of generality, we
consider that «y; is independent of the viewpoint index i.

To solve (3), we design the following optimization pro-
cedure. At initialization, the coder selects the left-most and
right-most views to comprise the initial set of encoded views,
ie, VO = fy; vy} It then sets the assigned (encoding)
rates to the corresponding video and depth frames to zero,
ie., Rgc?)i =0,i € VO f, € {v,d}. Next, for every two
consecutive coding layers [ and [ + 1, the coder selects the
best assignment of the incremental (layer) rates I; and R4,
given its rate allocation carried out for layers 0 < k < (. For
simplicity, we consider that R; = AR,VI. Our optimization
is implemented as a minimization of the cost function in (3),
via an exhaustive search over all prospective assignments of
R; and R;;; to encoding video or depth frames f; and f;
associated with views ¢ and j, at encoding layers [ and [ + 1,
where ¢ and j could be new or already encoded views. Note
that optimizing over two layers jointly represents a good trade-
off between optimization performance® and computational
complexity. Furthermore, we observed that expanding the
optimization horizon to four layers does not provide significant
additional benefits.

An algorithmic description of our source coding optimiza-
tion is provided in Algorithm 1. We denote the action of
rate assignment to view ¢ € VD ag refinement, because the
corresponding frame f; is encoded predictively with respect to
its version f; present in the compressed bitstream comprising
layers 1,...,0 — 1. That is, we encode the difference f; — f;.
The thereby created new bits are merged to the embedded
code associated with frame f; in the compressed bitstream,
thus, allowing for refining the reconstruction quality of f;, at
decoding. We denote the action of rate assignment to a new
view as insertion, since a new view i € V is inserted in V).
In this case, the associated video or depth frame f; is encoded
predictively, using as a reference a synthesized version of the
frame f;, interpolated using the nearest left and right views in

SConsidering only one layer in isolation cannot exploit the benefit of
allocating rate to both video and depth frames of the same viewpoint.



V), The exhaustive search computes the cost function in (3)
for every possible assignment of R; and R;4; to refinement
or insertion of f;, f; € {v,d}, for i,j € V. It then selects
the action that results in the smallest cost value, to generate
coding layers [ and [ 4 1 that are then integrated into the

embedded bitstream. In addition, the assigned rates R(f? ;, and

Rgf;l), for f; € {v,d},i € V are updated to account for the
incremental allocation of R; and R;y;. Similarly, the sets Vi
and V'*! are updated accordingly When the optimization in
Algorithm 1 completes it results in an embedded stream with
optimal source rate R(/)* and view selection V (F)*,

Algorithm 1 View-popularity-driven scalable source coding
1: Initialize V© = {v1,on}; R(O) Rffg =0,icV®;1=1

2: repeat

33 forieVand f; € {v,d} do

4 if i € V(" then

5: Encode(f; — fi); yit+D — y®

6: for j €V and f; € {v,d} do

7: if j € VT then

8: Encode(f; — f;)

9: else ~

10: Encode(f; — f;)

11: end if

12: Compute the cost function in (3)
13: Record the result in D(4, 7, fi, f;)
14: end for

15: else

16: Encode(f; — fi); VD = v O U {4}
17: for j €V and f; € {v,d} do

18: if j € VUT then

19: Encode(f; — f;)
20: else .
21: Encode(f; — f;)
22: end if
23: Compute the cost function in (3)
24: Record the result in D(4, 7, fi, f;)
25: end for
26: end if
27:  end for

28: (7] fuf]) _argminD(i7j7f’i7fj)
290 RV, =RV iev fie{vd}

30:  if ¢ V“ D then

31 V‘” =yu-D

32: else

33; VO = yI=by e}
34: end if

5. RV =RV . +AR

36: R“jl) Ry)ﬂzev,ﬁe{v,d}
37:  if j* € V(" then

38: vy — y®

39: else

40: VD — O g {5}
41:

end if
42: R;lj;) R(”}) + AR
43 1=142
44: until [ < L

Our principle when designing Algorithm 1 was simplicity.

Thus, we opted not to formulate a solution to (3) via more
sophisticated techniques, e.g., dynamic programming [29],
since due to the complexity of (3), the latter would not lead
to better solutions.

C. Source and channel rate allocation

Here, we consider that the clients’ access links may also ex-
hibit heterogeneous packet loss. Thus, the multi-view multicast
layers need to be protected against its impact on video quality.
In particular, now, the reconstruction error of a viewpoint V;
will also depend on the assignment of forward error correction
(FEC) packets to each of the layers, carried out by the server.
In the following, for simplicity and without loss of generality,
we assume that one source layer is put in one transmission
window. Formally, let R( ) = = (RY,...,R}) denote the rate
of protection (parity) packets a551gned to every window. We
are interested in computing R(%) and RISL) jointly, inclusive
of V(I such that the aggregate video quality over the client
population is maximized. In this case, the overall data rate
of the L windows needs to meet the multicast session’s
transmission rate constraints. Thus, we write

1)) L) R (L) 5
R(E) rrﬂlg v<L>Zw v(BELR, ) ©)

i Con < (R 4 R i (R + R) < Coe.
=1

Similarly to (4), Dy, (R, RS, V(E)) is computed using

Dy, (R, R, vE Z”y Dj, R®) R V),
Jj=1

. (6)
where D7, RO R, VD) denotes in this case the ex-
pected reconstruction error of viewpoint ¢ for client class j,

given R(Y), RZE,L), and V(X which can be computed as

D, (R, R{M, VL) (1R, V),

Z Pry(
(7

where Pg = 1 — Py(N), Pr., = [[-, Pi(N), and for
l=1,....,L =1, Py = [T._, P(N)(1 = P11(N)). Note
that P;,;(IN) is the probability that the first [ layers are
decoded correctly, while layer [ 4+ 1 is not decoded correctly.
Furthermore, Dy, (1 : IR, V() represents the recon-
struction distortion of viewpoint ¢ for client class j when
the first [ transmitted layers are decoded correctly, given the
source rate allocation and view selection (R, V), Here,
Dy, (0/R), V(L)) denotes the reconstruction error when no
received layers are decoded correctly. This quantity depends
on the error concealment strategy used by the clients. We note
that the probabilities P;.,;(IN) directly depend on the amount

of protection added, that is, RpL (see Section III), hence the

right-hand side of (7) is also a function of RZ(,L).



D. Optimization methods

Note that our source encoding procedure produces an em-
bedded bitstream of fine granularity. Therefore, given our
channel encoding procedure from Section III-B, solving (5)
can be carried out by determining the partition of the embedded
bitstream across its L windows, illustrated in Figure 2, that
is determining the source coding rate per layer, and comput-
ing the corresponding window selection probabilities A;. Let

sy (R, RéL)) be the number of source symbols in window .

In the following, for clarity, we denote s;(R("), RéL)) simply
as s;. Then, (5) can be reformulated as

(in ) 2 wiDu({ah () ®)

L
s.t. Cmin < Nl; Z)\l = 1;NL < Cmaxa
=1

where NV; is the cumulative number of symbols that can be
generated by channel coding of the source data in windows
k =1,...,0. In our implementation, we solve (8) by quan-
tizing the probabilities \; using a step size of 0.1, which
was empirically found to provide good trade-off between
complexity and performance, and then applying either full
search or local search algorithm.

1) Full search: The full search method is based on com-
puting the objective in (8) for all combinations of {s;} and
quantized {);}, given R*(%) and V*(X)_ This is possible, since
s; and L need to be kept small due to the complexity of RLC
decoding. The computational complexity of this optimization
step is O(|{s;}|*max/2s . |{\;}|V/B2), where A, and A,
denote the step sizes for the prospective s; and \; values, and
Smax represents the maximum possible value that an s; can
attain. Note that though our optimization features non-trivial
complexity, that does not preclude its deployment in practice,
as it is not expected to operate in real time, in the application
we consider. Still, we present next a low-complexity method
that approximates the exact solution closely.

2) Low-complexity local search: Instead of searching over
all possible combinations of {s;} and quantized {\;}, we
design a local search algorithm that significantly reduces the
computation time. Our local search procedure is summarized
in Algorithm 2. AX and As denote the step change for the \;
and s; parameters, respectively. The algorithm starts by setting
s; = Nj and \; = 0, for all j, save for Ay = 1. Then, for
each distribution of the )\;’s, the algorithm decreases the s;’s
as long as there is improvement. Once no further improvement
can be obtained, the A;’s are updated, and the s;’s are further
decreased. Ultimately, when no further improvement can be
achieved, the algorithm terminates.

V. EXPERIMENTS

We carry out a comprehensive evaluation of various per-
formance aspects of our system and its relation to multiple
reference schemes. We carefully examine the impact of the
multi-view content and the client population characteristics
on the coding efficiency of all schemes under comparison. To

Algorithm 2 Low-complexity local search

1: Initialize [A1,...,A\z] = [A],...,AL] =[1,0,...,0,0]

2: Initialize [s1,...,s.] = [s1,...,87] = [N1,..., NL]

3: Initialize Doz = 00

4: fori=1to L —1do

5 FLAG1 =0
6: repeat
7.
8

i = \i — A)\; )\i+1 = )\i+1 + AX
if >°,A; =1 then

9: for j=Lto1do

10: FLAG2 =0

11: repeat

12: sj =8 —As

13: Compute the cost function of (8)
14: Assign the result to D

15: if Dpaa < D then

16: Doz = D3 s =550 = \i
17: FLAG2 = 1; FLAG1 =1

18: else

19: break

20: end if

21: until s; < As

22: end for

23: end if

24: if FLAGI1 = 0 then

25: break

26: end if

27:  until \; < AN

28: end for

29: Return [s1,...,s7],[A],- - s AL], Dmax
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Fig. 3. Client popularity distribution: Uniform (blue), sharp Gaussian (red),
smooth Gaussian (black) and multi-peak Gaussian (green).

evaluate the performance of our source-channel coding system,
we either use analytical expressions given in Section III or
carry out experiments in a custom-built Matlab simulator that
we developed to this end, which is clear from the context. In
our simulations, we assume that there is one receiver per class.
Extension to multiple receivers per class is straightforward.
Uniform view popularity distribution is always assumed unless
otherwise stated.

A. Content, client, and channel characteristics

We use the multi-view video sequences Ballet and Break-
dance provided by Microsoft Research [30]. They both fea-



ture 8 camera viewpoints capturing video signals of spatial
resolution of 768 x 1024 pixels and temporal rate of 15
frames-per-second. The data sets include estimated depth video
sequences for each camera, at the same spatial resolution
and temporal rate. We adopt the depth-image-based rendering
(DIBR) algorithm from [30] to synthesize virtual views based
on encoded reference viewpoints, at a user. The captured 8
views are indexed as integers, 1,...,8, whereas the allowed
synthesized views comprise the encoded ones plus 3 virtual
views between each pair of camera viewpoints (indexed as
non-integers) amounting, thus, to a total of 29 views. We rep-
resent Dy, (-) for a synthetic V; as the PSNR of its interpolated
video signal’.

We consider that the clients’ view popularity distribution,
characterized by the weights w;, can attain one of the following
four types. First, a Gaussian function with a peak at the
view indexed as 3.5 and variance of 0.25 (distance between
two neighboring virtual views) is selected to correspond to a
narrow interval of interest in user view selection. Second, a
smoother Gaussian function with a peak at the view 4.5 and
variance of 1.5 models a wider interval of interest. The third
distribution corresponds to a multi-peak function comprising
two sharp Gaussian functions both with variance of 0.25
centered at 2.25 and 6.75, respectively. Finally, a uniform
popularity distribution where w; are constant models a non-
preferential user view selection — all views are equally popular.
These four popularity distributions are graphically shown in
Figure 3.

Since like digital fountain codes, EW-RLC represents a
universal channel coding scheme for erasure channels [14, 15,
31], its performance is affected only by long-term average
packet loss rate. Therefore, it suffices to examine only the
number of received packets at the receiver for each coding
window, and thus a conventional packet erasure channel model
is used in our experiments.

B. Reference techniques

With H.264/SVC, we denote a reference system based
on H.264/SVC and our EW-RLC scheme designed in Sec-
tion III-B. In terms of source coding, it applies H.264/SVC
across the video signal frames and the depth signal frames of
the captured viewpoints, independently for every time instance,
to enable random access to the encoded content for a user.
The MGS configuration used for H.264/SVC exhibits 4 coding
layers, each split into 4 additional sub-layers. Our EW-RLC
scheme forms two windows s; and so that comprise the base
layer and the base plus enhancement layer of the encoded
content, respectively. The symbol size is set to 1024 bytes,
and one symbol is put in one transmission packet, which is
common for RLC packetization [14, 16]. With Toni et al., we
denote the system proposed in [23]. It applies RLC in an
incremental fashion to an embedded collection of viewpoints
that are source-encoded independently using the standard video
codec H.264. In the context of source coding, our performance
measure is the objective function in (3), and in the context of

Relative to interpolation from non-compressed reference views.

joint source-channel coding, our performance measure is the
objective function in (5).

C. Source coding efficiency

First, we examine the setup considered in Section IV-B.
That is, we study the end-to-end performance of the competing
techniques under examination in this paper, in the absence of
packet loss (and thus channel coding). Specifically, in Figure 4
(for the content Breakdance) and Figure 5 (for the content
Ballet), we compare the compression efficiency® of our source
coding component (for the four popularity distributions shown
in Figure 3) and H.264/SVC. The graphs in both figures
demonstrate that knowing the clients’ view preferences can
improve coding efficiency in most cases, sometimes by more
than 1dB. We also demonstrate that our method outperforms
the standard H.264/SVC codec by more than 2dB.

370 —e; Unif(;rm o, ‘

—»— Sharp Gaussian o,

36 || —*— Smooth Gaussian o,
Multi-peak Gaussian o,
351 —v— H.264/SVC

34t

33

Avegaged PSNR across frames [dB]

31 i i i i i i
0 1 2 3 4 5 6 7 8 9
Bitrate [Mbps]

Fig. 4. Compression efficiency (Breakdance): Proposed method with uniform
(blue), sharp Gaussian (red), smooth Gaussian (black) and multi-peak Gaussian
(green) {w;} and H.264/SVC (magenta).
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Fig. 5. Compression efficiency (Ballet): Proposed method with uniform
(blue), sharp Gaussian (red), smooth Gaussian (black) and multi-peak Gaussian
(green) {w;} and H.264/SVC (magenta).

8Measured as the average Y-PSNR of the reconstructed content across the
client population versus the encoding rate of the content.



D. Source-channel coding performance

Here, we carry out multiple experiments. First, we consider
multicast to two client classes, where the client access links are
characterized as packet erasure channels. The two client classes
comprise a high-rate (HR) class and a low-rate (LR) class.
Thus, in our EW-RLC scheme from Section III-B, we construct
two embedded windows that comprise the scalable source base
layer only, in the case of window 1, and the scalable source
base and enhancement layers, in the case of window 2. In
these experiments, we first examine the impact of the multicast
transmission rate, the packet erasure rate, and the client class
distribution, expressed through the factors ~;, on the end-to-
end performance of our framework and H.264/SVC. Then,
we examine the sensitivity of our optimization framework
to a mismatch in the values of ~;. That is, we optimize
with respect to one set of ~; values, however, the actual
distribution on which we evaluate performance is different.
Next, we present end-to-end performance results examining the
impact of the view popularity distribution, followed by another
set of experiments where three client classes are examined.
Finally, we examine the difference in performance between
Algorithm 2 and the full search method from Section IV-D,
and study the relative performance of Toni et al. In all our
experiments, each client class is assigned a different downlink
bandwidth value, but equal packet erasure rate. Given the
nature of the error protection codes we use, this setup is
equivalent to fixing the client class bandwidth and varying the
erasure rate across the classes.

1) Impact of transmission rate: Figure 6 and Figure 7 show
the value of the objective function in (5) vs. the available
multicast rate to HR clients, for a packet loss rate of 5%. The
data rate at which the content is streamed to LR clients is half
of that for the HR clients. Analytical expressions from Secs
IIT and IV are used to evaluate system performance. It can be
seen that only for rates > 9.5Mb/sec the SVC scheme delivers
the content to the LR users. This is due to the relatively high
encoding rate of the SVC base layer. Only at very high rates
(above 12MB/sec) the SVC scheme becomes marginally better
than our solution.
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Fig. 7. Average video quality vs. HR client class multicast rate (Ballet).

different ; values. The transmission rate to the HR client class
is set to 9.5Mbps and the transmission rate to the LR client
class is set to 4.9Mbps. Each data point of a graph in Figure 8
and Figure 9 is obtained by optimizing the source-channel
coding for that specific v;. Analytical expressions from Secs
IIT and IV are used to evaluate system performance. It can
be seen that our system significantly outperforms H.264/SVC
for heterogenous client populations. Moreover, the proposed
scheme maintains steady performance, irrespective of ;.
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2) Impact of loss rate and {~;}: Figure 8 and Figure 9
show the average video quality for each client class, for three
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Fig. 9. Average video quality vs. packet loss rate for three different 1 values
(Ballet). The inset shows the zoomed-in high PSNR region.



3) {vi} mismatch: Figure 10 and Figure 11 examine the
sensitivity of our optimization to an incorrect ; value. That
is, the joint source-channel coding is optimized with respect
to one value of 7, however, the one used in practice, when
the content is delivered, is actually different. Thus, we have
a mismatch between the considered and actual values of ;.
In these experiments, we optimize our system for y; = 0.1 or
v1 = 0.9, and examine its performance, expressed through
the value of the objective function in (5), for y; = 0.5.
For a reference, we include in Figure 10 and Figure 11
the corresponding performance graphs in the absence of 7
mismatch. Analytical expressions from Secs III and IV are
used to evaluate system performance. It can be seen that
our system is robust to parameter mismatch, experiencing no
more than a 1dB performance degradation, for all simulated
examples. This is due to averaging over all client classes and
all 29 views. Moreover, a rate-optimal solution that maximizes
the total number of received packets usually provides a solution
close to the distortion-optimal one irrespective of . Note that
the ‘mismatch’ curves do not necessarily show monotonic
behavior, since different non-optimal schemes are used for
different packet loss rates.
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4) View popularity: The following results examine the effect
of the clients’ viewpoint popularity distribution. We use four
client classes, where all 7;’s are set to 0.25. The transmission
rate is set to 1.5, 2, 3, and 4 Mb/sec, for Class 1, 2, 3, and
4, respectively. Figures 12-15 show video quality achieved at

each viewpoint for Class 1 and 4, for the two video sequences
at packet loss rate of 0.1 (10%). The source-channel rate
allocation is optimized via the full-search technique from
Section IV-C, and the EW-RLC window selection probabilities
A;’s are selected such that the client class data rate constraints
are met. All results are averaged after 1000 simulations. One
can see from Figures 12 and 14 that the sharp Gaussian (peaky)
distribution has a clear PSNR peak while the multi-peak Gaus-
sian distribution has two obvious peaks, in the case of Class
1. This outcome occurs because of the low coding rate that is
available in the source coding optimization process for Class
1 so that only the pronounced views have been allocated non-
zero rates. For the same reason, the resulting PSNR values for
the uniform and peaky view-popularity distributions overlap in
Figure 14, in the case of views 4-8. These phenomena are less
visible in the case of Class 4, as illustrated in Figures 13 and
15, because of the higher operational data rate that is available
then, which resulted in allocation of non-zero rate to multiple
views in the optimization process.
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(Ballet: Client class 1).
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5) Three client classes: Figures 16 and 17 show the value
of the objective function in (5) vs. the packet erasure rate, in
the case of three client classes (L1, L2, and L3). The three
downlink bandwidth values associated with the client classes
are 1.25Mbps (L1), 2.45Mbps (L2), and 9.8Mbps (L3). A; and
A2 are set to 0.3 and 0.6. While H.264/SVC cannot support in
this case class L1 clients for packet loss rates greater than
0.02, our system provides three levels of acceptable video
quality for L1, L2, and L3 clients, across a large range of
packet loss rate values, as seen from the figures. Note that the
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Fig. 15. Video quality per viewpoint for different popularity distributions
(Breakdance: Client class 4).

performance of H.264/SVC is better for the highest class at
very low erasure rates due to the fact that at very high source
rates, SVC outperforms the proposed scheme.
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6) Local vs. full search: In Figure 18 and Figure 19, we
compare the two optimization methods we designed for chan-
nel coding in Section IV-D: full search and low-complexity
local search, for two and three client classes. The client
class downlink bandwidth values are selected as 4.9Mbps and
9.5Mbs (two classes), and 1.25Mbps, 2.45Mbps, and 9.8Mbps
(three classes). The ~;’s are all set to 1/2 and 1/3, for the
case of two and three classes, respectively. It can be seen that
the proposed local search method always finds an allocation
that delivers average video quality that is practically identical
to that for the full search method, in the case of two client
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Fig. 17. PSNR [dB] for each client class vs. packet loss rate (Ballet): Three
client classes.

classes. When the number of classes is three, the performance
degradation due to the local search optimization does not
exceed 0.4dB, as seen from Figure 18 and Figure 19. The
performance gap stems from the higher likelihood that the
local-search method will end up in a local minimum in this
case.
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Fig. 18. Objective (5) vs. packet loss rate (Breakdance): Local vs. full search.
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Fig. 19. Objective (5) vs. packet loss rate (Ballet): Local vs. full search.

We measure the execution time of our optimization algo-
rithms in order to assess their complexity in this context.
For three client classes, the local search algorithm found the
solution after 38 seconds, while the exhaustive search method
required 38 minutes. We measured these quantities on an Inter
Core 2 CPU 6700 2.66GHz processor with 2GB RAM running
MATLAB2011 on Windows XP OS. We anticipate that their



values will be much lower in the case of C/C++ implementa-
tion of the two optimization methods from Section IV-D.

7) Comparison to [23] for multiple client classes: Figure 20
shows the achieved average video quality — the objective
function in (5) — in the case of four client classes, as a
function of the aggregate transmission rate for all four layers.
We examine three prospective erasure rates in this case. The
benchmark method here represents the system Toni et al. that
was introduced earlier. The v;’s are set to 0.25. (Note that
in [23], the y distribution is not explicitly taken into account
since the transmission is over a peer-to-peer network.) For the
benchmark scheme, similarly to [23], we form four source
layers such that the first layer contains H.264-compressed
captured Views 1 and 8, layer 2 contains Views 3 and 6, layer
3 Views 2 and 5, and layer 4 Views 4 and 7. One source
layer is put in each RLC window. The source-channel rate
allocation is found using exhaustive search under transmission
rate constrains for each client class. The \;’s are set to ensure
that individual transmission rate constraints for each class are
satisfied.

Each point is obtained after averaging over 1000 simula-
tions. The lowest aggregate transmission rate corresponds to
40, 60, 80, 100 packets in layers 1-4, respectively, and the
highest to 80, 120, 160, and 220 packets.
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Fig. 20. Objective (5) vs. rate (Ballet): four client classes.

One can see that the proposed scheme significantly outper-
forms the benchmark method at low and medium transmission
rates, and across all erasure rates, while having alike perfor-
mance at high transmission rates. Competitive performance of
the benchmark scheme at the high end of transmission rates is
due to the better performance of H.264/SVC at high encoding
rates, in the case of a transmission-error-free environment.

The video quality achieved by our method (P) and the
benchmark (B) for every client class (C1, C2, C3, and C4) is
shown in Figure 21 as a bar graph. The four numbers across
every group of bars represent the transmission rate constraints
associated with every layer [ = 1,...,4 in Mb/sec, while the
numbers on the horizontal axis represent the corresponding
aggregate transmission rate of all four layers. Note that the
benchmark scheme does not succeed to deliver any layer to
client classes 1 and 2 at the lowest two aggregate transmission
rates, and it still fails to do that for the next aggregate
transmission rate point (10.5 Mbps) in the case of class 1. On
the other hand, it delivers the highest quality to class C4 in
the case when transmission bandwidth is plentiful (the last rate
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Fig. 21. View-averaged PSNR [dB] for the four classes vs. rate (Ballet).

point examined on the horizontal axis). Our solution instead
provides a much better balance in terms of video quality
distribution across the four client classes, for every aggregate
bandwidth value examined in Figure 21, e.g., even the client
class with the smallest transmission bandwidth (C1) is ensured
basic quality in all cases.
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Fig. 22.  PSNR [dB] per view for four client popularity distributions (Ballet
- client class 1).

Figure 22 shows the video quality per view for client
class 1. The transmission rates are set to 2, 2.45, 3.4 and
4.45Mb/sec for the four client classes, respectively. In the
case of the uniform view popularity distribution, one can see
that the benchmark scheme selects View 1 and View 8§ as
reference views and encoded them at very high quality. The
remaining viewpoints in between exhibit much lower quality,
as they can only be synthesized via DIBR (as the transmission
bandwidth is limited, they cannot be encoded as well) and the
reconstruction quality of such views reduces considerably as
their distance from the reference views increases. In the case
of non-uniform view popularity distributions, Toni et al. again
selects to encode the most popular captured views only, which
leads to poor reconstruction for the remaining viewpoints at
the client, as seen from Figure 22.

In contrast to this, the proposed scheme with uniform
distribution leads to a minor variation in reconstruction quality
across all reconstruction viewpoints (captured and virtual).
This is because the eight captured (actual) views are always
encoded and sent and three synthetic viewpoints are gener-
ated between each two neighboring actual views, making the
distance between the synthetic viewpoints and the captured
viewpoints small (hence DIBR is very effective) and uniform
across all viewpoints (hence low quality variations). On the



other hand, the proposed scheme with other, non-uniform,
distributions places more weight on the popular views resulting
in the increased coding rate for compressing these views which
leads to a higher reconstruction quality of these views as well
as increased quality of the neighboring synthetic views. This
can be seen by the PSNR peaks at the popular viewpoints and
graceful quality degradation when the viewpoint is moved from
the popular ones. This is a desirable feature, since in practice
a smooth quality transition between viewpoints is expected.

Figure 23 compares the cases of three and four client classes
(L), versus the packet loss rate. It can be seen that while the
proposed scheme shows graceful degradation as more classes
are introduced, the benchmark scheme degrades significantly
with the addition of new classes. The total transmission rate,
the sum of the transmission rates of all layers, is 8.4Mb/sec
and all v;’s are set to 1/3 and 1/4 for both cases, L = 3 and
L = 4, respectively. For L = 4 the transmission rates for the
four layers are 1, 1.5, 2.45, and 3.45Mb/sec while for L = 3
the rates are 2.35, 2.6, and 3.45Mb/sec. Exhaustive search is
used to find the optimal source-channel rate allocation.
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Fig. 23.  Objective (5) vs. PLR (Ballet): three vs. four client classes.

VI. CONCLUSION

We studied the scenario of multicasting VpD MVYV to a col-
lection of clients. To address their heterogeneity, we designed
a scalable joint source and channel coding scheme for which
we formulated a view-popularity-driven source-channel rate
allocation and view packing optimization problem that aims at
maximizing the expected video quality over all clients, under
transmission rate constraints and the clients’ view selection
preferences. We have shown that our system is superior to
state-of-the-art reference systems based on H.264/SVC and
the channel coding technique we designed, and H.264 and
network coding. Finally, we developed a faster local-search-
based method that still optimizes the source and channel
coding components of our system jointly, however, at lower
complexity, and exhibits only a marginal loss relative to the
original exhaustive-search optimization.
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