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Abstract: We report the transfer printing of blue-emitting micron-scale 
light-emitting diodes (micro-LEDs) onto fused silica and diamond 
substrates without the use of intermediary adhesion layers. A consistent 
Van der Waals bond was achieved via liquid capillary action, despite 
curvature of the LED membranes following release from their native silicon 
growth substrates. The excellence of diamond as a heat-spreader allowed 
the printed membrane LEDs to achieve optical power output density of 10 
W/cm2 when operated at a current density of 254 A/cm2. This high-current-
density operation enabled optical data transmission from the LEDs at 400 
Mbit/s. 
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1. Introduction 

Transfer printing (TP) is a rapidly emerging technique for heterogeneous integration in 
electronics and optoelectronics [1–5]. In TP, soft elastomeric stamps are typically used to 
‘pick and place’ device structures from their native growth substrate to a dissimilar receiving 
substrate, allowing the creation of novel hybrid device technologies. An important example of 
the application of this approach is in printing inorganic light-emitting diodes (LEDs), where 
pre-fabricated LED membrane devices can for example be transferred onto receiving 
substrates such as those based on polymers, enabling new forms of flexible displays [6]. As 
the technique matures and is optimized, thin membranes of suspended LED materials can be 
achieved in various ways, most commonly by directional wet etching of the growth substrate, 
here termed under-etching [1], or by laser lift-off [2]. However, a general issue for devices 
based on epitaxial multilayers is that removal of the substrate eliminates a natural heat-sink 
retained in conventional fabrication. This issue is severe for the important case of gallium 
nitride (GaN) based LEDs, in which, despite continuing efficiency improvements, most 
electrical input energy is dissipated as heat. Even for conventional devices in thermal contact 
with the growth substrate, operation under direct-current (dc) bias results in undesired thermal 
effects on the electroluminescence (EL), namely red spectral shifts and reduced optical output 
power (T-droop effect), while irreversible degradation of devices may also occur [3,4]. 
Reduction of the die size provides systematic improvement in heat dissipation, but does not 
eliminate these problems [5]. Heat dissipation from transfer-printed GaN-LEDs becomes a 
more pronounced issue when flexible polymeric materials are used as the receiver substrate, 
because these have lower thermal conductivities than inorganic materials used as the native 
growth substrate. Thermal effects in such a situation have been studied previously [2]. 
Regardless of the choice of receiver substrate in TP, the process flows normally feature 
adhesion-enhancement layers on the receiving substrates to aid the release of the LEDs from 
the transporting stamps [6]. Conventionally, these layers are organic materials, with poor 
thermal conductivities, κ (e.g. for polydimethylsiloxane (PDMS), κ ~0.15 W/m.K [7]). 
Therefore adhesion-enhancement layers impede heat dissipation from operating devices even 
if the underlying substrate has a relatively high thermal conductivity. 

The attractive alternative to the use of a conventional adhesion-enhancement layer, which 
we report in this paper, is to use a transient layer of a volatile liquid [8]. The liquid film aids 
release of devices from the transporting stamps, as in a conventional process. Subsequently, 
capillary forces during evaporation of the liquid enable formation of a robust Van der Waals 
bond between the transferred devices and receiving substrate, with no permanent intermediate 
layer to add thermal resistance, or changes in refractive index, at the interfaces. This study 
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utilized high-performance GaN LED epistructures on Si (111) substrates [9,10]. While Si can 
act as a reasonably effective heat-sinking material in conventional devices (κ ~149 W/m.K 
[11]), this material is removed during the under-etching fabrication step, using potassium 
hydroxide (KOH) solution, needed in the TP process flow [12]. We compared two receiver 
substrates with thermal conductivities much higher and much lower than that of the GaN-
based LED die (κ ~160 W/m.K for GaN [13]), namely diamond (κ ~2200 W/m.K [14]) and 
optical-grade silica glass (κ ~1.42 W/m.K [15]). The benefits of diamond as a heat spreader 
were investigated by comparing the dc characteristics of LEDs on these two receiver 
substrates. This part of our study included the use of thermal imaging to infer device 
operating temperatures, and to observe the transient heating effects under increasing dc drive 
currents. The ability of LEDs to operate at high dc current densities is also relevant to the 
emerging application of visible light communications (VLC) with LED sources [16]. In a 
typical situation where the data signal is superposed on a dc component, the modulation 
bandwidth of an LED increases with dc current up to a critical point [16,17]. As it is clearly 
of interest to see how transfer printed devices perform for VLC applications, we undertook 
comparison of the modulation bandwidths and data transmission characteristics of devices on 
diamond and silica. 

2. Experimental results 

We report the TP in array formats of 100x100 μm2 LEDs (micro-LEDs) emitting around 465 
nm onto single-crystal diamond platelets [14] (200 µm thick) and fused silica substrates (500 
µm thick). We concentrate on LEDs of such small dimensions here by reason of applications 
described later in the paper, but note that scaling to larger areas [2] should in principle be 
possible if strain compensation issues specific to GaN/Si are addressed. The GaN micro-LED 
structures and process flow, together with the mechanical transfer system and PDMS stamps, 
are as described previously [12]. Here, however, capillary bonding was achieved by 
introducing an intermediate step to the TP process, in which the backside of the devices being 
transferred is wetted with a suitable liquid as shown in Fig. 1. 

 

Fig. 1. Schematic of transfer printing using capillary bonding. The left-hand figure represents 
the pick-up of a suspended device using an elastomeric stamp (a). Upon pick-up, LEDs are 
compressed against an acetone-wetted cloth (b) and released when the backside contacts 
receiving substrate (c). The excess of liquid aids the positioning and release of the LED from 
the transporting stamp. After thermal curing, the LED is bonded to the new substrate (d). 

After pick-up from the donor wafer as per Fig. 1(a), the backside is wetted on an acetone-
impregnated standard cleanroom wipe as shown in Fig. 1(b). Quick retraction of the stamp 
removes the LED die from the wipe with its backside still wet, and it is then deposited onto 
the receiver substrate, shown in Fig. 1(c). The transparency of the stamps allows the TP 
process to be followed visually, and Fig. 2(a) confirms overflow of excess liquid to the sides 
of the LED die when it is compressed against the receiving substrate. Slow retraction of the 
stamp causes the liquid to partially reflow back underneath the die, and provide initial 
adhesion between the die and the receiving substrate, through liquid capillarity. This stage is 
shown in Fig. 2 (b). Subsequent evaporation of liquid proceeds from the outside of the die, 
and during this step the forces at the retreating meniscus bring the two surfaces into intimate 
contact [8]. While no specific tests have been performed at this time to assess the placement 
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accuracy in detail, the LEDs are printed using the same mechanical system we have 
previously shown to be capable of sub-micrometer placement [12], and we note that the 
printed dies hold their positioning during slow stamp retraction and later after the solvent has 
been evaporated. 

 

Fig. 2. Images illustrating the process of capillary bonding of individual LEDs onto rigid 
substrates. Parts (a) and (b) are optical microscope views through the transparent stamp at 
successive stages: (a) after wetting of the LED backside, contact is made with the receiving 
substrate; (b) stamp retraction allows the liquid to reflow underneath the LED. Parts (c) and (d) 
are views through the substrate showing interference effects from an air gap left round after 
liquid evaporation and bonding in the central region: (c) colored fringes visible under white 
light; (d) fringes observed under laser light. 

After moderate heating to 50°C to evaporate any remaining liquid, the devices are left 
bonded by Van der Waals forces over the contact area with the receiving substrate. Both 
combinations of surfaces brought into contact (i.e. diamond or silica substrates, and the 
micro-LED backside) display similar root-mean-square roughness values of ~1 nm as 
measured by atomic force microscopy (AFM). We have previously attributed the smoothness 
of the micro-LED bonding surface to a protective SiNx layer formed between the Si substrate 
and the AlN growth initiation layer [17]. This layer can largely protect the underside of the 
III-nitride die from attack by the KOH etch solution used to remove the Si substrate. Such 
low roughness results in two tightly-bonded surfaces robust to mechanical disturbance, and 
surviving multiple wet-processing steps necessary to complete the device fabrication. 
However, imaging of the devices through the back of the receiving substrate reveals a pattern 
of interference rings associated with an air gap as shown in Fig. 2(c) and 2(d). This 
observation correlates with curvature of the LED dies, which limits contact to the central 
region of the LED. Such curvature is reasonable to expect after removal of the Si substrate 
beneath the LED epistuctures. The epistructures are engineered such that the total epi-layer/Si 
substrate system is approximately strain balanced. This requires compressive strain to be 
introduced into the AlGaN buffer layers using lattice mismatch to counteract the tensile strain 
introduced by the thermal expansion difference between the nitride layers and the Si substrate 
on cooling from the growth temperature. After removal of the Si substrate this residual 
compressive strain in the AlGaN buffer layers then induces the concave curvature seen, as it 
acts against the topmost GaN layers in the LED stack. 

The method to investigate the observed curvature of the LED dies after deposition used 
the imaged interference rings under monochromatic and coherent (653nm-emitting laser 
diode) light, exemplified in Fig. 2(d), and standard analysis of optical interference. The height 
of the die-substrate air gap was spatially reconstructed, allowing visualization of the 
backplane curvature over a full die as illustrated in Fig. 3(a). Essential information regarding 
the die positioning and tilting can be obtained from such measurements. The effective contact 
area, corresponding to the colorless mesh in Fig. 3(a), in the central region of a sample LED 
was found to be 14 ± 2% of the total die area and a radius of curvature averaging 2 mm per 
die (assuming a spherical curvature). 
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Fig. 3. Backplane curvature measurements. In (a), the calculated height of the air gap between 
a bonded LED and the substrate is represented as a mesh reconstructed by the photographed 
interference pattern. The colorless central area indicates where contact is assumed to occur. In 
part (b), an AFM line scan over the central area of an unbonded LED die is shown and 
extrapolated with a parabolic fit. Part (c) shows an SEM image of a micro-LED transfer 
printed onto a rigid substrate (at 45° tilt), and connected to Ti/Au metal tracks. 

To further analyze the backplane curvature, an AFM profile scan was performed (45μm in 
length) on a flipped-over die where the central area was measured and fitted over the entire 
lateral size of the die as shown in Fig. 3(b). By zeroing the measurement to the minimum 
height as the center of the backplane curvature, the AFM height scan matches the interference 
rings height reconstruction for the area surrounding the center of the die (with ± 2 μm lateral 
fluctuations). However - towards the edges of the reconstructed backplane - higher curvature 
zones can be seen as per Fig. 3(a), indicating that the radius of curvature is not constant. SEM 
imaging provided a qualitative assessment of the height at the extremities of ~2.5 μm closely 
matching the values attained by the interference-based measurements. 

To act as an electrical insulation layer and encapsulation for the devices on diamond and 
silica receiver substrates, an SU-8 epoxy photoresist layer of 10 μm post-cure thickness was 
deposited and patterned. Metal tracks, comprising 200 nm of Au above 50 nm of Ti, were 
deposited next, contacting the LED through localized apertures in the SU-8. The media 
surrounding LED dies in such a situation are shown in the right-hand part of Fig. 4(a). 

 

Fig. 4. Thermal conductivities of media surrounding the respective transfer-printed LEDs (a): 
The left half-section of the device illustrates the air-exposed baseline devices deposited on 
PDMS adhesion enhancement layers. The right half-section represents the case of the better 
performing substrates (diamond and silica) with improved heat dissipation and volumetric SU-
8 (κ ~0.3 W/m.K [19]) encapsulation on top. Full device arrays can be seen in the microscope 
images in parts (b), (c) and (d) with configurations of 1, 2 and 4 active LEDs respectively. 

As well as introducing the capillary-assisted TP of LEDs onto diamond and silica, we also 
fabricated for reference identical device structures onto PDMS/polyethylene terephthalate 
(PET) flexible substrates as previously demonstrated [17]. The media surrounding dies in this 
case are shown in the left-hand part of Fig. 4(a). 6x6 device arrays were assembled onto each 
substrate with alternative LED driving configurations as pictured in Fig. 4(b)-(d). 
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Figure 5 shows the operating voltage (V) and the optical output power density (L) of three 
representative LEDs as a function of the current density (J). L-J curves were acquired with 
the devices in direct contact with a calibrated Si photodiode detector, capturing only the light 
going through the supporting substrate. Characteristics of a reference micro-LED bonded to a 
PET polymer substrate with a 20-µm PDMS intermediate adhesion layer are included for 
comparison with those of the devices on diamond and bulk silica substrates. The devices on 
the PDMS/PET substrates were in direct thermal contact with air on one side, while those 
bonded to the inorganic receiver substrates were encapsulated with SU-8 epoxy as described 
above. The reference devices operated at a maximum drive current density of 30 A/cm2, 
producing an optical output power density of 55 mW/cm2 before permanent damage was 
observed. This limited performance is attributable to a poor environment for heat dissipation. 
The media on opposite sides of the LED dies, air and PDMS, both have lower thermal 
conductivities than their counterparts in the encapsulated devices bonded to inorganic 
substrates. LEDs on all three substrates display similar turn-on voltages (~4.5 V), indicating 
good ohmic contacts, and effective performance from the thin metal current-spreading layer 
over the p-GaN. A maximum current density of 255 A/cm2 was measured without significant 
thermal roll-over on diamond substrates, representing a major improvement when compared 
to similar devices on soft intermediate layers (~30 A/cm2) [2,12] . 

 

Fig. 5. Characteristics of an individual LED in operation on different substrates. In (a), J-V 
curves for individual LEDs on PDMS/PET, silica and diamond substrates, respectively. In (b) 
the corresponding L-J with the inset showing a magnification of the device emission on the 
PDMS/PET substrates used as a baseline comparison achieving a maximum optical power 
density of 55 mW/cm2. 

The maximum values for optical power density in Fig. 5 for devices on inorganic receiver 
substrates were 10 W/cm2 at 255 A/cm2 (I = 20 mA) and 3.2 W/cm2 at 77 A/cm2 (I = 6 mA) 
for devices on diamond and silica respectively. LEDs on silica gave a maximum optical 
power inferior to their counterparts on diamond, and started to reach saturation from thermal 
rollover after 78 A/cm2. However, repeated drives up to 80 A/cm2 showed no damage to the 
LEDs, in contrast to the irreversible damage suffered by devices on PDMS/PET above 30 
A/cm2. LEDs on diamond consistently outperformed those on the other substrates, due to its 
orders of magnitude higher thermal conductivity. The maximum optical power density per 
LED (10 W/cm2) was nearly three times higher than that obtained from devices on silica. This 
represents a significant advance, outperforming previously reported transfer-printed devices 
with an equal die size by a factor of 10 [2]. 

To better understand how the two very different thermal conductivities of diamond and 
silica affected the device performance, the temperature distribution across LED arrays was 
measured with a calibrated thermal infrared camera, viewing through the substrate [Fig. 6(a)] 
and focusing on the plane of the LEDs. The camera acquisitions accounted for the emissivity 
of the GaN in the wavelength range of 1.5 to 5μm and the false-color representation of 
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temperature is referenced to the emissivity of GaN. The images show semi-quantitatively the 
much greater effectiveness of heat spreading in the array on diamond. At the highest current 
density no hot spots are evident, in contrast to the hot spot around the powered LED on glass, 
and there is a comparable temperature rise across the full diameter (3 mm) of the diamond 
substrate. 

 

Fig. 6. (a) Thermal imaging of LED arrays with a single device powered on diamond (top) and 
silica (bottom). The emitting LED is identified in the last diamond frame as a black dot. The 
last frame of the silica-substrate row shows a magnified view of the die and its metal 
interconnection tracks. The captured images show the measured temperature corrected for the 
LED material (GaN); the rest of the image should be interpreted as a relative comparison. Part 
(b) shows the dependence of LED temperature on the injected current density (see Media 1). 

Figure 6(a) also suggests the apparently enhanced temperature rise along the metal 
interconnection tracks. This is considered to be mainly an artifact arising from the metal 
emissivity and the calibration procedure, although a significant role for aluminum 
interconnection tracks in lateral heat transport in similar LED arrays has been proposed and 
simulated previously [1]. Figure 6(b) shows estimates of the temperature of the powered LED 
die as a function of drive current density for the two substrates, and shows an approximate 
linear dependence in each case. Devices are estimated to reach a maximum operating 
temperature of ~115°C. This is reached by devices on silica at an injection current density of 
90 A/cm2. LEDs on diamond attain a similar temperature only at 230 A/cm2, a current density 
2.5x higher. Representative heat-propagation visualization is available (see Media 1) showing 
real-time heat propagation with 1mA current increments on both substrates. 

The very different heat-spreading properties of diamond and silica are expected to affect 
the spectral shifts shown by LEDs operating at different dc drive currents. Therefore 
electroluminescence spectra were recorded with a fiber-coupled spectrometer. Figure 7 shows 
how the peak EL wavelength shifted, and the inset illustrates typical spectra at relatively low 
current density. The peak EL emission of the transfer-printed devices shifted over a full range 
of 464 to 455 nm (Δλ = 9 nm) and of 463 to 459 nm (Δλ = 4 nm) on diamond and silica, 
respectively. The corresponding injected current densities ranged from 12 to 100 A/cm2 for 
silica, and to a maximum of 256 A/cm2 for diamond. In the case of LEDs on silica, the peak 
wavelength blue-shifts initially, with a reversal to a red shift above 50 A/cm2 as similar to 
other reports of InGaN/GaN based LEDs [8]. The blue shift in polar (0001)-oriented device 
structures, as used here, are usually attributed to carrier screening by piezoelectric fields in 
the quantum well (QW) active region. Localized heating meanwhile causes strong 
competitive red shift effects - including bandgap shrinkage - which become dominant at 
higher injected current densities [8] and due to the devices own self-heating effects [10]. 
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Fig. 7. EL peak shift of a representative single LEDs as a function of increasing injected 
current on diamond (red triangles) and silica (blue squares). The inset shows representative EL 
spectra at 46 A/cm2 for both substrates. 

In the case of LEDs on diamond, a continuous blue shift is the net observable trend. 
Because these devices reached similar temperatures to those on silica at the highest current 
densities, the bandgap shrinkage contribution will be similar. It is likely that strain effects in 
the QWs, associated with thermal expansion mismatches between the III-nitride dies and 
underlying substrate, play a role in the markedly different spectral shift behavior [9]. The 
transition observed from initial blue shifts to red shifts parallels several previously published 
reports, which discuss contributing mechanisms in more depth, and their investigation with a 
wide range of techniques [2–4,18]. 

The combination of LED die sizes 10-100 times smaller in area than those of typical 
commercial GaN-based devices, and the ability to sustain high dc current densities through 
effective heat dissipation on diamond, motivated further fast-modulation measurements 
relevant to visible light communications (VLC) applications. A key parameter for VLC is the 
electrical-to-optical (E-O) modulation bandwidth (BW), which is conventionally measured 
using a −3 dB criterion. A small LED size naturally enhances BW by minimization of 
capacitive contributions, but a decrease in the differential carrier lifetime in GaN-based QWs 
as carrier density rises also gives a significant increase in BW with current density [16]. BW 
measurements on transfer-printed devices were acquired in a similar fashion to that reported 
elsewhere, applying a modulation signal on a constant dc bias [16]. Figure 8 shows the 
expected initial increase of BW with current density for devices on both diamond and silica. 

 

Fig. 8. E-O bandwidths as a function of dc drive current density of representative LEDs 
deposited onto diamond and silica. 
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Devices on both silica and diamond displayed similar performance for current densities 
under 50 A/cm2. Above this point roll-over became evident for devices on silica, which are 
thus limited to a maximum BW of ~55 MHz. The BW of devices on diamond continued to 
increase at much higher current densities, and to plateau at 200 A/cm2, corresponding to a 
maximum BW of 154 MHz. These maximum observed BW values, which establish a 
performance benchmark for transfer printed devices for optical communications, that could be 
further improved by fabricating smaller LEDs for use in the TP process. Interesting 
comparisons can also be made between the results in Fig. 8, and previous BW measurements 
on micro-LEDs fabricated from similar epitaxial material, but tested on the Si growth 
substrate [17]. These were circular in shape, and of 45 µm diameter. The previous non-
transferred devices attained BWs of 190 MHz at relatively low current densities around 6 
A/cm2. However, they displayed an unusual temporary saturation of bandwidth increase in 
this current density range, before moderate further BW increases at higher current densities 
attributed to heating effects, and associated lowering of series resistance [17]. The smoother 
initial BW increase with current density shown by the transfer-printed devices resembles 
typical results from conventional GaN-on-sapphire devices [16]. These observations suggest 
that alteration of the strain state of QWs by removal of the Si substrate may influence the 
recombination dynamics of carriers significantly. 

To further demonstrate the potential of the transfer-printed devices for VLC, tests were 
made of the optical transmission of data in a back-to-back configuration. The resulting eye 
diagrams are shown in Fig. 9. A simple on-off keying modulation scheme was used with a dc 
bias for the device on diamond of 10.5 V, and of 5.7 V for the device on the silica. A peak-to-
peak modulation of 2 V was used in both configurations, and pseudo-random sequences of 27-
1 bits were employed, as in previous work [16]. 

 

Fig. 9. Data-transmission measurements from representative LEDs deposited onto diamond 
(top row) and silica (lower row). The eye diagrams were acquired with the same dc applied 
current throughout. 

Devices on diamond displayed open eye diagrams at data-rates up to 400 Mbit/s, 
correlating with error-free data transmission. In contrast, devices on silica showed eye closure 
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above 100 Mbit/s, which was virtually complete at 150 Mbit/s. The superior performance of 
the devices on diamond is again ultimately attributable to this material’s effectiveness as a 
heat spreader, allowing operation of the LEDs at higher dc current densities. 

3. Summary 

Micro-transfer printing combined with liquid capillary bonding is demonstrated as a 
technique to directly integrate active device membranes to novel rigid substrates without 
adhesive interlayers. The technique retains the scalability and potentially nanometer 
positioning accuracy we have demonstrated previously [12], but brings additional benefits in 
direct contact to functional substrates including those possessing high thermal conductivity. 
As an important example of the use of this technique, the electrical and optical characteristics 
of 100 x 100 μm2 blue-emitting GaN LEDs transfer printed in array format onto diamond and 
silica receiver substrates are compared, and demonstrate the major benefits of diamond as a 
heat-spreading material. Devices on diamond were driven at dc current densities up to 254 
A/cm2 without reaching thermal roll-over, or suffering permanent damage. A maximum 
optical output power density of 10 W/cm2 was recorded from devices on diamond substrate, 
which is more than three times the optical power density of counterpart devices on silica (3.2 
W/cm2). The response of the devices to fast modulation, involving superposition of a data 
signal on a dc offset, was also studied, motivated by applications in optical data transmission. 
The effective heat dissipation offered by diamond allowed devices to attain maximum 
electrical-to-optical modulation bandwidths of 154 MHz at dc current densities of ~200 
A/cm2. The same devices achieved a highly competitive back-to-back data transmission rate 
of 400 Mbit/s at a dc current density of 128 A/cm2. 

The LED structures used in this study were optimized for conventional large-area LED 
fabrication, where the wafer-scale properties are most important. In future studies we will 
investigate how the strain profile in the layer stack can be modified to reduce the curvature of 
the micro-LEDs and improve the contact area, which should bring further benefits to the 
optoelectronic performance of the devices. We note finally that our technique of LED transfer 
printing onto diamond has the potential to take advantage of commercial-scale polycrystalline 
diamond substrates or the cost-economies to be expected from scaled up single-crystal CVD 
growth of diamond. 
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