Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Accounting for site characterization uncertainties when developing ground-motion prediction equations

Gehl, Pierre and Bonilla, Luis Fabian and Douglas, John (2011) Accounting for site characterization uncertainties when developing ground-motion prediction equations. Bulletin of the Seismological Society of America, 101 (3). pp. 1101-1108. ISSN 0037-1106

Full text not available in this repository.Request a copy from the Strathclyde author


Current ground-motion prediction equations invariably assume that site conditions at strong-motion stations, often characterized by the average shear-wave velocity to a depth of 30 m (VS30), are known to a uniform accuracy. This is, however, rarely the case. In this article, we present a regression procedure based on generalized least-squares and maximum-likelihood approaches that take into account the varying uncertainties on VS30. Assuming that VS30s for various groups of stations are known to different accuracies, application of this procedure to a large set of records from the Japanese KiK-net shows that the regression coefficients are largely insensitive to the assumption of nonuniform uncertainties. However, this procedure allows the computation of a site-specific standard deviation (σ) that should be used for sites where VS30 is known to different accuracies (e.g., a site only specified by class or a site with a measured VS profile). For sites with a measured VS profile, this leads to lower sitespecific σ than for a site that is poorly characterized because this technique explicitly models the separation between the epistemic uncertainty in VS30 and the aleatory variability in predicted ground motion.