Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Organic semiconductor laser biosensor : design and performance discussion

Haughey, Anne-Marie and McConnell, Glenn and Guilhabert, Benoit and Burley, Glenn A. and Dawson, Martin D. and Laurand, Nicolas (2016) Organic semiconductor laser biosensor : design and performance discussion. IEEE Journal of Selected Topics in Quantum Electronics, 22 (1). ISSN 1077-260X

[img]
Preview
Text (Haughey-etal-JOQE-2015-Organic-semiconductor-laser-biosensor-design-and-performance)
07128654.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (3MB) | Preview

Abstract

Organic distributed feedback lasers can detect nanoscale materials and are therefore an attractive sens- ing platform for biological and medical applications. In this paper, we present a model for optimizing such laser sensors and discuss the advantages of using an organic semiconductor as the laser material in comparison to dyes in a matrix. The structure of the sensor and its operation principle are described. Bulk and surface sensing exper- imental data using oligofluorene truxene macromolecules and a conjugated polymer for the gain region is shown to correspond to modeled values and is used to assess the biosensing attributes of the sensor. A comparison between organic semiconductor and dye-doped laser sensitivity is made and analyzed theoretically. Finally, experimental and theoretical specific biosensing data is provided and methods for improving sensitivity are discussed.