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ABSTRACT 

 

Presented are the results of an earthquake magnitude homogenization exercise for several 

datasets of induced earthquakes. The result of this exercise is to show that homogeneous 

computation of earthquake moment- and local-magnitude is useful in hazard assessment of 

Enhanced Geothermal Systems (EGSs). Data include records from EGSs in Basel 

(Switzerland), Soultz (France) and Cooper Basin (Australia); natural geothermal fields in 

Geysers (California) and Hengill (Iceland), and a gas-field in Roswinkel (Netherlands). 

Published catalogue magnitudes are shown to differ widely with respect to Mw, with up to a 

unit of magnitude difference. We explore the scaling between maximum-amplitude and 

moment-related scales. We find that given a common magnitude definition for the respective 

types, the scaling between moment- and local-magnitude of small earthquakes follows a 

second-order polynomial, consistent with previous studies of natural seismicity. Using both 

the Southern-California ML scale and a PGV-magnitude scale (Mequiv) determined in this 

study, we find that the datasets fall into two subsets with well-defined relation to Mw: Basel, 

Geysers and Hengill in one and Soultz and Roswinkel in another (Cooper Basin data were not 

considered for this part of the analysis because of the limited bandwidth of the instruments). 

Mequiv was shown to correlate 1:1 with ML, albeit with region-specific offsets, while the 

distinct subsets in the Mequiv to MW scaling led us to conclude that source and/or attenuation 

properties between the respective regions were different. 

 

Keywords: Amplification, Attenuation, Earthquakes, Induced seismicity, Magnitude, 

Moment, Peak ground velocity. 
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1.  Introduction 

Enhanced Geothermal Systems (EGSs) aim to provide sustainable, cost-effective and 

environmentally-friendly energy. They build upon the concepts of classic geothermal energy 

production, but facilitate the production in case of insufficient fluid conductivity. An EGS 

project aims to increase reservoir permeability through the use of micro-seismicity, with 

high-pressure fluids forced into the system creating new, or opening pre-existing fractures in 

the rock.  Such methods provide the potential for initiating geothermal systems in any region 

with a sufficient temperature-gradient; however, the substantial cost of such projects means 

that both water-heating and electricity production are required to make them economically 

viable. The water-heating requirement implies that EGS projects are often set up in populated 

regions, since the transport of heated water requires costly insulation and transit pipelines. 

One such EGS project was the Deep Heat Mining Project in the city of Basel, Switzerland. 

The project aimed to provide up to 3MW of electricity, in addition to 20MW thermal energy, 

through a 200°C reservoir at 5km depth. Fluid injection was abruptly halted on the 8th 

December, 2006, after increasing seismicity culminated in a ML 2.6 event. A few hours later 

a ML 3.4 earthquake caused widespread light damage resulting in insurance claims of over 

$9M (Giardini, 2009). 

 

A thorough risk assessment of an EGS project is clearly required in order to assess and 

mitigate potential losses and appease the local population. Given the induced seismicity 

related to an EGS, a key component of such a risk study is a seismic hazard assessment. Such 

hazard studies are typically carried out for sensitive facilities such as nuclear power stations. 

In these cases, events with magnitudes between Mw 5.5 and 7.5 are typically the most 

important since they have the most impact on long return-period hazard (Bazzurro and 

Cornell, 1999). However, in the case of an EGS, magnitudes of interest start at around Mw 2 

due to the proximity to populated areas and the goal of avoiding nuisance to the population. 

In order to provide the frequencies of exceeding given ground-motion (intensity) measures 

within particular intervals, probabilistic seismic hazard analysis (PSHA) integrates ground-

motion estimates over the magnitude-occurrence probability distribution. This is facilitated 

through statistical analysis of earthquake magnitude catalogues, where the a- and b-values of 

the Gutenberg and Richter (1944) Relation  are defined for a given source area. Consistent 

earthquake magnitude is, therefore, a critical component of PSHA.  

 

Seismic monitoring of an EGS typically involves several medium- or short-period 

velocimeters (sensors that measure ground velocity) around the reservoir. This facilitates 

hypocentre localisation, depending on the methods employed, to within several hundred to 

tens of metres. Magnitudes are typically provided based on peak-amplitude measures, with 

correction for the source-station distance. The most common scale is the local- or Richter-

magnitude, ML (Richter, 1935): 
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𝑀𝐿 = log10 𝐴 + 𝑓(𝑅), (1) 

with 𝐴 the peak-amplitude (in mm) on a Wood-Anderson torsion seismometer and 𝑓(𝑅) a 

correction factor for attenuation over distance 𝑅. The main problem with such scales is that 

the agency-dependent application of the attenuation correction often results in significantly 

different magnitudes being assigned for the same size earthquake occurring in different 

regions (Fäh et al., 2011). In PSHA, the moment magnitude is usually used, since: it does not 

saturate at large magnitudes (although this is obviously not an issue for small EGS shocks); it 

is mostly agency-independent due to the analysis of very-low frequency (hence weakly-

attenuated or -amplified) signals and; leads to simple, and therefore robust, recurrence 

statistics (e.g., a- and b-values). Furthermore, the MW scale is the only one that can be 

directly estimated from fault parameters (length, width and offset), typically used to assess 

the occurrence rate of large (infrequent) earthquakes. Nevertheless, in the case of induced 

seismicity, it still has to be shown that the MW scale is appropriate for PSHA, since it is based 

on fault area and slip, and therefore correlated to low-frequency ground motions. In this study 

we construct a homogenized earthquake catalogue including moment, local and PGV-

equivalent magnitudes for a range of induced events. For convenience we refer to the 

magnitudes calculated in this work as reference values, since we can assure a common 

procedure and scale. However, magnitudes are, to an extent, an arbitrary measure. The 

catalogue magnitudes may include processing for which we cannot account, such as expert 

judgement. And indeed, the use of regional specific attenuation corrections may be necessary 

due to differences in the propagation media. This should nevertheless become apparent upon 

comparison of the different magnitudes. 

2. Determination of Moment Magnitude  

We follow the method of Edwards et al. (2010) for the computation of moment magnitudes 

for small earthquakes. The method is based on the far-field spectral model of Brune (1970, 

1971) and was shown to provide magnitudes consistent within ±0.1 units of moment tensor 

(MT) solutions of M>3 events in Switzerland. MT solutions require waveform matching of 

long-period arrivals, which may not be possible for small events due to noise or band-limited 

instrumentation. In contrast, spectral matching to obtain moments only requires fitting of the 

flat portion of displacement spectra, which can be done at fairly high frequencies above the 

background noise for small events. Therefore, such methods are the only suitable approach to 

determine Mw for such earthquakes. 

2.1  Data and processing 

Data were available from a range of instrument types depending on location. More 

information can be found in Douglas et al. (2013). All data were first corrected for the full 

instrument response to provide traces with units of ground velocity. Analysis windows were 

chosen based on a 5-95% square velocity integral around the peak velocity. The multi-taper 
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Fast Fourier Transform (mtFFT) with 5-3π prolate tapers was used to convert these into 

Fourier velocity spectra, and a 1Hz log-average smoothing filter was applied. Noise windows 

were taken from the first 5s of the traces, and processed in the same way. To ensure we did 

not underestimate the noise, the resulting noise estimates were conservatively raised to ensure 

that they matched the analysis window amplitudes at the lowest and highest frequencies of 

the spectrum. Following this, the valid frequency limits (fmin and fmax) of the analysis spectra 

at three times the noise level were determined. To retain a spectrum, we required that this 

bandwidth (fmax/fmin) exceeded 10. 

2.2  Model setup 

As in Edwards et al. (2010) we assumed a simple 1/R geometrical decay, while the anelastic 

attenuation (t*) is determined on a path-specific basis during the inversion along with the 

spectral plateau (𝛺0) and the source corner-frequency (fc). In the case of induced events 

recorded at short distances the attenuation terms should not be critical but the aim here is for 

consistency rather than precision. For instance, in the case of an increase in the decay 

exponent of 10% (e.g., 1/R1.1), the determined Mw would be 0.05 too low at 5km, or 0.07 too 

low at 10km when assuming 1/R decay. Site amplification, which is known to strongly vary 

from site-to-site, is difficult to quantify due to the lack of a reference. The inversion 

procedure detailed in Edwards et al. (2010) can account for site-specific amplification 

provided that either the average amplification across the network is known or at least one Mw 

value is independently available. When most stations are on hard rock, the average 

amplification can be set to unity, meaning that the resultant site-specific amplification is 

relative to the network average shear-wave velocity (Vs) profile (e.g., Poggi et al., 2011). 

However, if strong site amplification exists the assumption of no average network 

amplification would cause Mw to be overestimated (as site amplification is mistakenly 

attributed to the source). We, therefore, adopted an approach to estimate the average network 

amplification through correlation of site effects. The 𝜅0  parameter (Anderson and Hough, 

1984) characterises the high-frequency attenuation that is generally attributed to the upper 

layers of rock and soil beneath a site, and can be simply measured from the high-frequency 

decay of the Fourier acceleration spectra. Since it depends on properties of the site, 𝜅0 has 

been shown to correlate with the upper 30m time-travel average Vs (Vs30; e.g., Edwards et al., 

2011), which is itself known to correlate with site amplification (e.g., Borcherdt, 1994). 

Edwards et al. (2011) showed that, in Switzerland, the 𝜅0  could be used to approximate 

average amplification at a given site, 𝐴𝑗 . However, such correlations are known to be 

associated with high uncertainty. In order to reduce this uncertainty, and increase the degree 

of freedom of the inversion for Mw, whilst still constraining the trade-off between 

amplification and magnitude, we therefore fix the average amplification over the network (as 

opposed to individual station values). When lacking other information, we, can estimate this 

average network amplification, 𝜐, using: 
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log(𝜐) =
1

𝑁
∑[1.31log(𝜅0,𝑗) + 2.32]

𝑁

𝑗=1

  (2) 

 

with 𝜅0,𝑗  equal to 𝜅0  at site j. The inversion for Mw was then constrained such that site-

specific amplifications had to satisfy the average amplification, 𝜐. 

3. Comparison of Catalogue and Moment Magnitudes 

In this section we compare the moment magnitudes estimating using the approach detailed 

above and the magnitudes listed in available catalogues for the six considered sites. 

3.1 Basel, Switzerland 

The Basel EGS project began fluid injection on 2nd December, 2006 and continued until the 

8th when injection was halted due to rapidly increasing seismicity (Giardini, 2009). During 

this time around 11,570 m3 of water was injected at high pressures to stimulate the 

seismically active zone (Häring et al., 2008). Prior to shutdown water was being injected in 

excess of 50 l/s with wellhead pressures reaching up to 29.6 MPa (Deichmann and Giardini, 

2009, Häring et al., 2008). Several hundred earthquakes directly related to the EGS were 

located during and after the injection phase (Deichmann and Giardini, 2009); however, we 

only analyse a subset that were manually located by the Swiss Seismological Service (SED). 

This subset comprises events larger than about Mw 1.3, and hence of most interest for seismic 

hazard, since they were possibly felt by the local population. In the case of this dataset, the 

majority of recordings were made on the sedimentary basin underlying the city of Basel on 

strong-motion surface sensors and borehole geophones deployed by Geothermal Explorers 

Ltd. Further recordings were available from the SED’s broadband seismic network (SDSNet). 

Despite their limited quantity, the recordings on the SDSNet are particularly advantageous 

since Poggi et al. (2011) provide site-specific amplification (and a corresponding regional 

velocity model) for these sites as part of a study of wider Swiss seismicity. As such, it was 

possible to constrain the inversion in terms of the trade-off between site amplification and 

magnitude by fixing the amplification at SDSNet sites.  

 

In a previous comparison of magnitudes for earthquakes in the entire Swiss region, Goertz-

Allmann et al. (2011) showed that: 

 

𝑀𝑊 = 0.594𝑀𝐿 +  0.985 ± 0.096                                (𝑀𝐿 < 2) 

𝑀𝑊 = 1.327 +  0.253𝑀𝐿  +  0.085𝑀𝐿
2 ± 0.079        (2 ≤ 𝑀𝐿 ≤ 4) 

𝑀𝑊 = 𝑀𝐿 − 0.3 ± 0.105                                                 (𝑀𝐿 > 4). 

(3) 

(4) 

(5) 
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This relation was shown to be very similar to another model of regional ML:Mw scaling in 

Europe derived by Grünthal et al. (2009). When compared with ML values from the 

Earthquake Catalogue of Switzerland (ECOS09), inverted Mw values computed here were 

found to conform, on average, to this MW:ML scaling relation (Fig. 1.). On closer analysis, 

ECOS09 MW, which were estimated from ML using the scaling relation in Equations (3) to 

(5), are generally higher than the directly inverted values, particularly for smaller events [Fig. 

1.(b)]. This is because site amplification was not taken into account in the case of MW 

converted from ML in ECOS09, whilst for the inverted Mw presented here, amplification was 

calculated for each recording site and is consistent with the Swiss reference velocity model of 

Poggi et al. (2011). Of interest is the impact of borehole installations on observed 

amplification. The deepest boreholes (adjacent to the injection well) are instrumented with 

three seismometers: OTTER, OTER1 and OTER2. These lie at the surface (298m above sea-

level), 545m and 2785m below the surface respectively. Average amplification obtained for 

OTTER was a factor of 2.1, consistent with its position at the top of a sedimentary basin 

(with low seismic velocity Vs30=418ms-1). Borehole sites OTER1 and OTER2 showed 

average amplification of 0.34 and 0.19 respectively. Part of this deamplification is expected 

due to the fact that there is no free-surface effect in the borehole (which is assumed to be a 

factor of 2 for all sites). Accounting for the lack of free surface at OTER1 and OTER2 leaves 

amplification of 0.68 and 0.38 respectively. The deamplification is accounted for by 

considering that the rock velocity at the instrument location [OTTER1 Vs≈2kms-1 and 

OTER2 Vs≈ 3.5kms-1 (Bethmann et al., 2012)] is higher than the reference rock with 

Vs30=1.1kms-1 (Edwards et al., 2013). Since most of the EGS recordings are sited on deep 

sediments (more so for smaller events only recorded locally on the sedimentary basin), they 

consequently undergo significant amplification, computed magnitudes are higher when they 

do not properly account for this phenomenon (e.g., Mw converted from ML in ECOS09). 

Nevertheless, the similarity of magnitude scaling between the EGS events studied here and 

those in the wider tectonic context indicate that there is nothing particularly special (e.g., in 

terms of radiated energy) about EGS events. 

3.2 Geysers, California 

The Geysers Geothermal Field is primarily a dry-steam field in a natural greywacke 

sandstone reservoir at around 1-3 km depth. Seismic activity has increased since commercial 

exploitation started in 1960 (Majer et al., 2007).  Local seismicity is monitored through the 

dense Berkeley-Geysers (BG) network, consisting of 29 3-component geophones, in addition 

to several nearby stations of the Northern California Seismic Network (NCSN). We analyse 

data from the BG network recorded between 2007 and 2011, made available by the Northern 

California Earthquake Data Center. 

 

Several events in the dataset include independent Mw estimates from MT inversions using 

data recorded on broadband NCSN instruments. We use this to constrain the amplification-
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magnitude trade-off by fixing events with known Mw≥3.5. Five further events with Mw<3.5 

assigned by NCSN were available and their values are compared with those derived by us in 

Fig. 2. Three of the five events are consistent to within 0.1 units. However, two of the events 

differ in magnitude by around 0.15. Whilst it is not unreasonable to expect our inverted 

values to differ by 0.15 units from the truth, given the known standard deviation of 0.1, the 

moment tensor solutions are also not definitive, particularly for such small magnitudes.  

 

Comparing the remaining catalogue magnitudes with Mw we find that the duration magnitude 

(Md) used by the Berkeley-Geysers (BG) network scales well with Mw (Fig. 3.), with R² = 

0.98, but with a constant offset. Using an L2 minimization, assuming known Md, we find that 

for the Geysers catalogue in the range 0.9≤Md≤3: 

 

𝑀𝑤 = 0.90Md + 0.47 ± 0.08 (6) 

 

Catalogue ML values (although there are few in this case) tend to be slightly lower than Mw, 

opposite to the results for the Basel data in this magnitude range [Fig. 3.(b)]. 

The largest magnitude determined in our analysis was Mw 3.9. The offset of ML versus Mw in 

Fig. 3. suggests this is anonymously high. A corresponding value from the NCSN was not 

available. However, using the empirical GMPEs derived by Douglas et al. (2013) for induced 

seismicity we can see that a mean value of Mw 3.9 is consistent with recorded peak ground 

velocity (PGV) for this event. Similarly, upon recomputing ML for this event we find a higher 

value of 4.4, which is then more consistent with the general trend. 

3.3 Hengill, Iceland 

Data from induced earthquakes related to the Hengill geothermal area were recorded as part 

of the I-GET FP6 project (Jousset et al., 2011). The temporary array consisted of seven 

Guralp Systems broadband seismometers. The dataset was supplemented by recordings from 

three 5s Lennarz velocimeters of the Iceland Meteorological Office (IMO). Seismicity is 

thought to be related to cooling and subsequent contraction of the rock (Jousset et al., 2011). 

κ0 values were first measured for each station. From this the average amplification was 

estimated to be a factor of 2.1 using equation (2). Computed Mw values are shown in Fig. 4., 

compared with catalogue values for local and moment magnitude from IMO. An offset of 

around 0.3 units between the Mw value determined here and the catalogue values is apparent. 

The inverted Mw values also fall above the ML:Mw trend line of Goertz-Allmann et al. (2011). 

Such a systematic difference suggests that the magnitudes were computed using different 

assumptions. A particularly sensitive choice is the attenuation correction. In our computation, 

we used the simplest assumption of 1/R decay; however, given adequate knowledge of local 

attenuation, this may have been assigned differently.  
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3.4 Roswinkel, Netherlands 

Roswinkel is the location of a natural gas-field in north-east Netherlands. The gas field is 

situated at a depth of around 2 km and was exploited between 1980 and 2005. The strongest 

earthquake recorded was an ML 3.4 event, which led to shaking equivalent to macroseismic 

intensity VI. Our dataset consists of 27 events with 0.9≤ML≤3.2 recorded by up to five 

strong-motion sensors deployed to record the seismicity related to the gas-field. Of these, 24 

were assigned Mw values. Unfortunately, most events were well recorded by only one to three 

instruments which may lead to large deviations in magnitude estimation due to radiation 

effects. Nevertheless, the plot of Mw versus catalogue ML shows a surprisingly linear scaling, 

with minimal scatter (Fig. 5.). Additionally, the magnitudes conform quite closely to the 

Swiss Mw:ML scaling relation of Goertz-Allmann et al. (2011), with a constant offset of 

around 0.1 units.                 

3.5 Soultz, France 

The Soultz dataset is from a research EGS project situated in the Rhine Graben. Data are 

obtained from three velocimeters, which recorded numerous earthquakes induced over the 

course of several reservoir stimulation phases between 2003 and 2010. The main reservoir is 

located at around 5km depth and is at approximately 200°C. We analyse data from the 2003 

injection phase. From the measured κ of 0.03s, it was estimated using Equation (2) that the 

average amplification would be a factor of 2.1. The inversion showed that amplification was 

similar at all three instrumentation sites (2.6, 1.8 and 2.0), probably due to their close 

proximity on similar geology. A comparison of catalogue ML [provided by the School and 

Observatory of Earth Science, Strasbourg, (EOST)] versus inverted MW values is shown in 

Fig. 6. In this case, the catalogue ML values are generally higher than MW, and deviate by 

over 0.5 units from the Swiss Mw:ML scaling relation. One explanation for this could be 

related to the very short recording distances for this data. In this case, the correct calibration 

of the ML scale at such distance is critical, and may be overlooked if regional seismicity was 

used for its derivation. 

3.6 Cooper Basin, Australia 

Cooper Basin lies in central Australia and is home to significant oil and gas production. A 

recent EGS experiment in 2003 was performed by injecting more than 20,000 m³ of water 

into the Granitic crust at 4.25 km depth (Baisch et al., 2006). Thousands of induced events 

were detected and recorded by an eight station three-component geophone network deployed 

in boreholes at depths between 70  and 1700 m  (Baisch et al., 2006). The limited instrument 

sensitivity presents a challenge in this case; with the corner-frequency of the instrument’s 

velocity-response at around 10Hz. Nevertheless, due to the relatively low-attenuation 

(recordings at short distance), and small magnitude, the spectral-plateaus could still be 

reliably measured. Mw could, therefore, still be determined despite the strongly band-limited 

data. Attenuation was measured as between κ=0.02 and 0.04s, which is not particularly low, 
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despite the borehole installations. This is probably because, despite the sensors being located 

in boreholes, the limited penetration depths did not exceed the limit of the sedimentary basin. 

Based on the observed attenuation, average amplification was estimated to be a factor of 2.3. 

Inverted values were consistent with borehole depths: the shallower boreholes (90-110m) 

generally leading to higher recorded amplification than the deeper boreholes (220-450m), 

with factors of 3.6 and 1.1 respectively. In this case, we also accounted for the fact that the 

borehole sensors are not subject to the free-surface effect (roughly a factor of two). The 

computed Mw (Fig. 7.) are systematically lower than Mw and lie above the Swiss ML:Mw 

relation by about 0.3 units. The largest event in our database had ML 2.5, and was assigned as 

Mw 2.9. In this case, we suspect that the significantly band-limited instrument led to the 

underestimation of ML. 

4. Common Local Magnitude and Mequiv 

In the previous section, we compared catalogue magnitudes with computed Mw. Significant 

and systematic variations could be seen across the different datasets. This obviously has an 

impact on the estimated hazard if a single ground motion prediction equation (GMPE) is used 

in all cases. An important question to pose is: whether such differences are really justified, or 

whether they arise purely from processing and computational decisions? In order to make a 

meaningful comparison between the datasets, we recomputed all ML using a common 

correction for attenuation. This makes a similar assumption to that used for our Mw 

calculation: regional differences in attenuation have a low influence for short propagation 

distances. The equation used was as Equation (1), with A the displacement in mm on a Wood-

Anderson Torsion Seismometer (here simulated), along with the attenuation correction used 

by the Southern California Seismic Network: 

 

𝑓(𝑅) = −log[0.3173exp(−0.00505R)R−1.14] (7) 

 

which is modified from Kanamori et al. (1993) . The resulting comparison with Mw is shown 

in Fig. 8. Two subsets are apparent: those events which follow the model of Goertz-Allmann 

et al. (2011): Geysers, Hengill and Basel [Fig. 8.(a)]; and those which follow the same trend, 

but offset by around half a magnitude unit: Roswinkel and Soultz [Fig. 8.(b)]. Interestingly, 

Roswinkel has shifted from presenting positive Mw-ML residuals, to negative, highlighting 

that magnitudes are not absolute. 

 

Edwards et al. (2010) and Deichmann (2006) showed, through numerical simulations, that 

differences in frequency dependent attenuation (e.g., Q and κ) have the most impact in 

scaling between ML and Mw at low magnitudes, since, despite differences in stress-parameter, 

such events all have significant proportions of high-frequency energy at the source. As such, 
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we would suspect that the two subsets of events exhibiting similar scaling behaviour undergo 

similar attenuation. Between the two, we could then infer that attenuation at Geysers, Hengill 

and Basel is higher than at Roswinkel (relative to the correction applied using Equation (7)). 

However, a further problem is apparent, and that is the non-uniform distance distribution 

between individual databases. Unfortunately, this could reflect discrepancies or bias in the 

distance-attenuation correction. For instance, Roswinkel and Soultz (comprising one of the 

subsets) have very short average distances of about 3 and 5km, respectively. 

 

Bommer et al. (2006)  introduced the concept of a PGV-referenced magnitude as part of their 

traffic-light alert system for EGS projects, using the example of Berlin, El Salvador. The 

PGV-equivalent magnitude (Mequiv), for a reference hypocentral depth was defined to be the 

event magnitude required for an event at that depth to produce the same surface PGV, 

according to a prescribed attenuation equation. In order to define the attenuation equation, we 

regressed Mw (to estimate Mequiv), PGV and hypocentral distance using an equation of the 

form: 

 

Mequiv = c1 + log(PGV) + c2log(√R2 + c3
2) (8) 

 

with R the hypocentral distance, and PGV in ms-1. All datasets with the exception of Cooper 

Basin (because of the limited bandwidth of its data) were included in the regression. We 

found that 𝐜𝟏 = 3.9720; 𝐜𝟐 = 2.1577 and 𝐜𝟑 = 4.6403, with 𝝈𝑴 = 0.82. Unfortunately, the 

rather large 𝝈𝑴 indicates that there is limited correspondence between Mw and PGV, at least 

using the functional form adopted. This may be due to the role of source properties (such as 

slip kinematics or stress-drop), which do not affect Mw, but have a significant impact on 

recorded PGV, particularly in the case of weakly attenuated signals. Whilst the minimisation 

aimed to reduce the misfit between moment and PGV-equivalent magnitude, PGV is 

nevertheless a point-measure on a seismogram. Therefore, it is not surprising that it behaves 

similarly to ML, another point- and band-limited measure, as shown in Fig. 9. This similarity 

in scaling can be seen in Fig. 10., which shows Mequiv versus recalculated ML. It can again be 

noticed that the data fall into the same two distinct subgroups. 

 

Since in this case, the attenuation correction was specifically designed for the data (as 

opposed to the correction adopted for Southern California in the case of ML). We can infer 

(after checking the residuals of the regression) that it is not a result of any bias in the distance 

correction which leads to the difference in ML:Mw scaling. Rather, the difference must be a 

result of either: (a) different attenuation, or (b) different source properties in the different 

regions, or indeed, a combination of both. 
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5. Conclusion 

We computed moment magnitude for induced earthquakes from a number of regions. 

Comparing these against catalogue magnitudes, we found that they all broadly follow similar 

scaling behaviour, but offset relative to one another. This scaling behaviour was found to 

follow a segmented polynomial curve, consistent with the results of Goertz-Allmann et al. 

(2011). The scatter of all catalogue ML values versus Mw was significant, which leads us to 

question what reported earthquake magnitudes really tell us, and how they can be used in 

hazard assessments? 

 

Part of the problem is through agency specific calibration of the ML scale, for example, how 

attenuation is accounted for. This was highlighted by Fäh et al. (2011) during a catalogue 

homogenization for the Earthquake Catalogue of Switzerland 2009: events occurring in the 

border regions of Switzerland would be assigned systematically different magnitudes by the 

seismological observatories operating on either side of the border. Clearly, some differences 

in attenuation corrections may be justified. However, in order to compare all events 

independently of source agency, we recomputed the ML values using a Californian 

attenuation model. In this case, with the same data used for the computation of ML and Mw, 

and a unique attenuation correction, the scatter in the scaling plots was significantly reduced. 

Nevertheless, two sub-classes of events were apparent, the first with scaling exactly 

following the model of Goertz-Allmann et al. (2011), and a second with approximately a half 

unit offset. This observation itself may indicate that the two sub-groups require different 

attenuation corrections or calibration of the computation of ML from Wood-Anderson 

amplitudes. Edwards et al. (2010) showed through simulated seismograms that the curvature 

of ML:MW scaling is strongly controlled by source scaling (i.e., how stress-drop varies with 

Mw). The similarity in shape of the ML:MW scaling in both subgroups indicates that average 

source-scaling is therefore similar in all regions.  

 

What is important to note is that due to the control of ML by relatively high frequencies 

(compared to Mw), it is more sensitive to differences in attenuation. This fact, and the 

resultant ambiguity in the meaning of ML, leads us to suggest that it is not suitable for 

ground-motion prediction or PSHA where components (GMPEs, recurrence statistics, etc.) 

are adopted from other regions. Similarly, we do not recommend that Mw is estimated from 

ML, apart from in the case that the conversion equation is robustly determined from local 

(network specific) data (e.g., Douglas et al., 2013). The magnitudes from the Cooper basin 

data were not included in this analysis, as we could not be sure that the significantly-limited 

instrument bandwidth (f>10Hz) did not have an adverse impact on estimated ML. This 

highlights the importance of monitoring decisions: while low-cost geophones are suitable for 

detection and location, magnitude estimation requires recording in a suitable frequency 

bandwidth. 
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Finally, we computed a PGV-equivalent magnitude, Mequiv, using an attenuation model 

computed using the data of this study. It was shown that ML and Mequiv scale 1:1, although 

offsets are apparent within particular datasets. This suggests a systematic difference in the 

PGV of records from a certain dataset, with respect to the Wood-Anderson response, and may 

be indicative of underlying source- or attenuation processes. Due to the 1:1 scaling of ML and 

Mequiv, the scaling of Mw with Mequiv was similar to that observed for ML: with two distinct 

sub-classes. Since the attenuation correction for PGV was computed using data from many 

regions, we could eliminate the influence of inappropriate distance correction interacting with 

different average recording distances. As a result, we inferred that the ground motion 

recorded in the various regions (Geysers, Hengill and Basel versus Soultz and Roswinkel) is 

fundamentally different, either due to different source-, and/or different regional attenuation-

processes. 

 

In the case of a probabilistic or deterministic hazard analysis for an EGS project, the expected 

earthquake magnitude distribution is required as an input. We have seen here, that if all ML 

values are taken as equal, it would have a significant impact on the hazard calculated in 

different regions. In fact, after recomputing ML we saw that differences with respect to our 

reference Mw were quite limited. The important aspect to consider is the compatibility of the 

magnitude computation (and resulting distribution), the GMPE to be used in the hazard 

analysis and the observed data. What must be avoided, is for equations to be chosen ad-hoc 

(e.g., ML attenuation corrections, or conversion from ML to Mw), without consideration of the 

propagation of errors due to such decisions further down the line. Finally, we recommend that 

magnitudes are properly defined, and that they are calibrated with a suitable GMPE (e.g., 

Douglas et al., 2013), such that in the case of hazard analysis, correct spectral ordinates can 

be properly estimated. 
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Figure Captions 

 

Fig. 1. Comparison of moment magnitude (Mw) versus (a) local magnitude (ML) and (b) 

Earthquake catalogue of Switzerland 2009 (ECOS09) Mw for the Basel EGS dataset. The 

Swiss ML:Mw scaling relation of Goertz-Allmann et al. (2011) is shown. 

Fig. 2. Comparison between inverted and catalogue Mw values for Geysers, showing those 

events with fixed Mw. 

Fig. 3. Comparison of moment magnitude (Mw) versus catalogue (a) duration magnitude (Md) 

and (b) local magnitude (ML) for the Geysers dataset. 

Fig. 4. Comparison of moment magnitude (Mw) versus catalogue (a) local magnitude (ML) 

and (b) moment magnitude (Mw) for the Hengill dataset. The Swiss ML:Mw model is that of 

Goertz-Allmann et al. (2011). 

Fig. 5. Comparison of moment magnitude (Mw) versus catalogue local magnitude (ML) for 

the Roswinkel dataset. The Swiss ML:Mw model is that of Goertz-Allmann et al. (2011). 

Fig. 6. Comparison of moment magnitude (Mw) versus catalogue local magnitude (ML) for 

the Soultz dataset. The Swiss ML:Mw model is that of Goertz-Allmann et al. (2011). 

Fig. 7. Comparison of moment magnitude (Mw) versus catalogue local magnitude (ML) for 

the Cooper Basin dataset. The Swiss ML:Mw model is that of Goertz-Allmann et al. (2011). 

Fig. 8. Comparison of common ML scale versus inverted Mw for all datasets in the study. (a) 

Geysers, Hengill and Basel events, along with the Swiss ML:Mw model of Goertz-Allmann et 

al. (2011). (b) Roswinkel and Soultz events plotted along with the Swiss ML:Mw model offset 

by 0.5 units. 

Fig. 9. Comparison of common Mequiv versus inverted Mw for all datasets in the study. (a) 

Geysers, Hengill and Basel events. (b) Roswinkel and Soultz events. 

Fig. 10. Comparison of ML using the Southern California attenuation, with Mequiv. 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 

Figure 6 
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Figure 7 

 

 
 

Figure 8 
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Figure 9 
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Figure 10 
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