Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Combining MLC and SVM classifiers for learning based decision making : analysis and evaluations

Zhang, Yi and Ren, Jinchang and Jiang, Jianmin (2015) Combining MLC and SVM classifiers for learning based decision making : analysis and evaluations. Computational Intelligence and Neuroscience, 2015. ISSN 1687-5273

[img]
Preview
Text (Zhang-etal-CIN-2015-Combining-MLC-and-SVM-Classifiers-for-learning-based-decision-making)
Zhang_etal_CIN_2015_Combining_MLC_and_SVM_Classifiers_for_learning_based_decision_making.pdf
Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. Accepted on May 11, 2015