
This version is available at https://strathprints.strath.ac.uk/53325/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Spatiotemporal patterns of epiphyseal bone loss after spinal cord injury – an investigation using peripheral Quantitative Computed Tomography (pQCT)

Sylvie Coupaud¹,2, Alan McLean², Mariel Purcell², Matthew Fraser², David Allan²

¹. Department of Biomedical Engineering, University of Strathclyde, Glasgow UK
². Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK

OBJECTIVES: This paper describes spatial and temporal distributions of bone loss in the paralysed limbs of patients during their first year after spinal cord injury (SCI). The objectives are to illustrate the intersubject variability in spatiotemporal patterns of bone loss after SCI, and to explore the potential factors affecting them.

METHODS: Twenty-six inpatients of the Queen Elizabeth National Spinal Injuries Unit in Glasgow with a motor-complete SCI leading to paraplegia or tetraplegia were scanned using pQCT within 5 weeks of injury. Scans were repeated at 4, 8 and 12 months post-injury. Two epiphyseal scans were taken in the lower leg, at 4% (distal) and 96% (proximal) of total bone length, and another at the distal femur (4%).

RESULTS: The different spatial patterns of epiphyseal bone loss include a “centralised” or “diffuse” pattern, versus a “speckled” or “mottled” pattern. An example of the pQCT time series at the distal tibia, for a patient exhibiting speckled/mottled bone loss, is given in Figure 1.

![Figure 1: pQCT time series at the distal L tibia (4% of total bone length), at: (a) Baseline (<5 weeks) (b) 4 months (c) 8 months and (d) 12 months post-SCI; Images are for a male patient with motor-complete SCI.](image1)

The intersubject variability in temporal patterns of bone loss suggests that some patients exhibit “fast” and others “slow” bone loss. An example of the pQCT time series at the distal tibia, for a patient exhibiting slow bone loss, is given in Figure 2.

![Figure 2: pQCT time series at the distal L tibia (4% of total bone length), at: (a) Baseline (<5 weeks) (b) 4 months (c) 8 months and (d) 12 months post-SCI; Images are for a male patient with motor-complete SCI.](image2)

CONCLUSIONS: Different spatiotemporal patterns of bone loss can be identified early after SCI, but further work is needed to identify factors affecting them, and to use spatiotemporal pattern classification to inform the development of new early treatments against further bone loss.