Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Miniaturized photoacoustic trace gas sensing using a raman fiber amplifier

Bauer, Ralf and Legg, Thomas and Mitchell, David and Flockhart, Gordon M. H. and Stewart, George and Johnstone, Walter and Lengden, Michael (2015) Miniaturized photoacoustic trace gas sensing using a raman fiber amplifier. Journal of Lightwave Technology, 33 (18). pp. 3773-3780. ISSN 0733-8724

Text (Bauer-etal-JLT-2015-Miniaturized-photoacoustic-trace-gas-sensing-using-a-raman-fiber)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (864kB)| Preview


    This paper presents the development of a Raman fiber amplifier optical source with a maximum output power of 1.1 W centered around 1651 nm, and its application in miniaturized 3D printed photoacoustic spectroscopy (PAS) trace gas sensing of methane. The Raman amplifier has been constructed using 4.5 km of dispersion shifted fiber, a 1651 nm DFB seed laser and a commercial 4W EDFA pump. The suppression of stimulated Brillouin scattering (SBS) using a high frequency modulation of the seed laser is investigated for a range of frequencies, leading to an increase in optical output power of the amplifier and reduction of its noise content. The amplifier output was used as the source for a miniature PAS sensor by applying a second modulation to the seed laser at the resonant frequency of 15.2 kHz of the miniature 3D printed gas cell. For the targeted methane absorption line at 6057 cm-1 the sensor system performance and influence of the SBS suppression is characterized, leading to a detection limit (1σ) of 17 ppb methane for a signal acquisition time of 130 s, with a normalized noise equivalent absorption coefficient of 4.1•10-9 cm-1 W Hz-1/2 for the system.