Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Number of cycles in the graph of 312-avoiding permutations

Ehrenborg, Richard and Kitaev, Sergey and Steingrimsson, Einar (2015) Number of cycles in the graph of 312-avoiding permutations. Journal of Combinatorial Theory Series A, 129. pp. 1-18. ISSN 0097-3165

[img]
Preview
Text (Ehrenborg-etal-JCTSA2015-number-of-cycles-in-the-graph-of-312-avoiding-permutations)
Ehrenborg_etal_JCTSA2015_number_of_cycles_in_the_graph_of_312_avoiding_permutations.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (377kB)| Preview

    Abstract

    The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols. That is, for every permutation π=π1π2...πn+1 there is a directed edge from the standardization of π1π2...πn to the standardization of π2π3...πn+1. We give a formula for the number of cycles of length d in the subgraph of overlapping 312-avoiding permutations. Using this we also give a refinement of the enumeration of 312-avoiding affine permutations and point out some open problems on this graph, which so far has been little studied.