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models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA)

in time-varying parameter regression models. DMS methods allow for model switching,

where a different model can be chosen at each point in time. Thus, they allow for the

explanatory variables in the time-varying parameter regression model to change over time.

DMA will carry out model averaging in a time-varying manner. We compare our exact

method for implementing DMA/DMS to a popular existing procedure which relies on

the use of forgetting factor approximations. In an application, we use DMS to select

different predictors in an inflation forecasting application. We find strong evidence of

model switching. We also compare different ways of implementing DMA/DMS and find

forgetting factor approaches and approaches based on the switching Gaussian state space

model to lead to similar results.
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1 Introduction

Bayesian model averaging or model selection (BMA or BMS) methods are commonly

used when the researcher is faced with many models. See, for instance, Hoeting, Madi-

gan, Raftery and Volinsky (1999) and Chipman, George and McCulloch (2001) for surveys

of these methods. Numerous empirical applications use these methods. However, they

were developed for regression models or other models where parameters are constant over

time. In time series econometrics, motivated by strong empirical evidence of structural

breaks or other forms of parameter change in many economic variables, models where

parameters change over time have long been used. Models such as the time-varying

parameter (TVP) regression model have enjoyed great popularity, particularly in macro-

economics [see, among many others, Cogley and Sargent (2005), Cogley, Morozov and

Sargent (2005), Primiceri (2005), Koop, Leon-Gonzalez and Strachan (2009), D’Agostino,

Gambetti and Giannone (2011) and Korobilis (2013)]. Just as with constant coeffi cient

models, it is possible that the researcher working with TVP regression models will want

to do model averaging and selection. However, it will typically be desirable to do these

in a time varying manner. This leads to an interest in dynamic model averaging (DMA)

or dynamic model selection (DMS). With DMA, the weights used in the model averag-

ing procedure can change over time. With DMS, the model selected can change over

time. This distinguishes it from conventional model selection methods where one model

is selected and assumed to hold at all points in time.

The literature on DMA or DMS is much more limited than that on BMA or BMS.

Perhaps the most prominent DMA approach for use with TVP regression models is that

of Raftery, Karny and Ettler (2010). To explain what this algorithm involves, we begin by

defining the set of models under consideration. Let yt be a dependent variable and Zt be a

row vector containing explanatory variables. We have K models which are characterized

by having different subsets of Zt as explanatory variables. Denoting these by Z
(k)
t for

k = 1, .., K, a set of TVP regression models can be written as:

yt = Z
(k)
t θ

(k)
t + ε

(k)
t (1)

θ
(k)
t+1 = θ

(k)
t + η

(k)
t ,

ε
(k)
t is N

(
0, σ

2(k)
ε

)
and η(k)t is N

(
0,Σ

(k)
η

)
.1

1Note that we have written the error variances, σ2(k)ε and Σ(k)η , as being constant. In empirical work
it may be desirable to have one or both of them to be time-varying. Details of our treatment of this issue
will be given below.
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DMA and DMS can be done by calculating Pr (st = k|yt−1) for k = 1, .., K where

st ∈ {1, 2, .., K} denotes which model applies at each time period and ys = (y1, .., ys)
′.

DMS involves selecting, for forecasting yt given information available at time t − 1, the

single model with the highest value for Pr (st = k|yt−1). DMA involves averaging across
models using these probabilities. Different approaches to DMA or DMS arise when dif-

ferent models or methods are used to calculate Pr (st = k|yt−1). Raftery et al (2010),
working in an application involving many potential explanatory variables and, hence, a

large model space, uses forgetting factor methods to approximate Pr (st = k|yt−1). This
leads to a computationally simple algorithm which does not require the use of Markov

chain Monte Carlo (MCMC) methods. In applications with many potential explanatory

variables [e.g. Raftery et al (2010), Koop and Korobilis (2012) and Koop and Tole (2013)],

the algorithm of Raftery et al (2010) does seem to be the only computationally feasible

algorithm currently available. However, as discussed in Section 3 of Raftery et al (2010),

it is an approximate method that does not arise from a particular statistical model of

model switching. Furthermore, it is a filtering algorithm as opposed to a smoothing al-

gorithm. That is, it provides the user with Pr (st = k|yt−1) for t = 1, .., T as opposed to

Pr
(
st = k|yT

)
.

The purpose of this paper is to investigate the use of an alternative, model-based, way

of allowing for time-varying model switching and compare it to the algorithm of Raftery

et al (2010). This alternative is the family of switching Gaussian state space models

described in, among other places, Kim (1994), Kim and Nelson (1999) and Fruhwirth-

Schnatter (2001a, b). Switching Gaussian state space models will be described in the

following section. Here we note only that they have been occasionally used in econometric

applications [see Chapter 13 of Fruhwirth-Schnatter (2006) for a list of applications], but

typically for state space models where the system matrices vary across regimes, not for

selecting explanatory variables in TVP regression models [an exception being Chan et al

(2012)]. An advantage of the use of switching Gaussian state space models is that results

are not approximate, being based on a valid Bayesian posterior distribution. A further

advantage is that either filtered or smoothed estimates can be obtained using existing

algorithms.

A disadvantage of the use of switching Gaussian state space models is that MCMC

methods are required. This substantially raises the computational burden and means their

usage is limited to model spaces based on relatively few explanatory variables. However,

it provides a setting in which we can compare DMA using the algorithm of Raftery et

al (2010) to DMA using switching linear Gaussian state space models. If we find the

algorithm of Raftery et al (2010) to provide results which are quite different from those
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using switching Gaussian state space models in a setting with a small model space, it will

raise concerns about the use of Raftery et al (2010)’s algorithm in the large model spaces

where it is typically used. However, if the two approaches yield similar results, it will

increase our confidence in the use of the algorithm of Raftery et al (2010) in large model

spaces.

This paper contains an application involving selecting between or averaging different

independently produced forecasts of a dependent variable. That is, Zt will contain vari-

ous forecasts of the dependent variable yt. Methods for combining forecasts provided by

different models goes back to Bates and Granger (1969) and Granger (2006) provides a

recent survey. Recent approaches related to our own include Guidolin and Timmermann

(2009), which uses a Markov switching approach to model switching in constant coeffi -

cient models and Billio, Casarin, Ravazzolo and van Dijk (2011) who develop an approach

with time-varying forecast weights. Our application is to forecasting US inflation. Papers

such as Ang, Bekaert and Wei (2007) consider various forecasts of inflation (e.g. forecasts

produced by professional forecasters, consumer surveys, econometric forecasts, etc.) and

investigate which ones forecast best. Ang, Bekaert and Wei (2007) find that surveys do.

We add to this literature using DMS and DMA methods. Note that, unlike Ang, Beckaert

and Wei (2007), we can have forecast switching so that, e.g., consumer surveys forecast

best at some points in time and econometric models forecast best at other times. We

find that there is evidence of model switching which would be missed by conventional ap-

proaches. Our empirical application also provides evidence that the algorithm of Raftery

et al (2010) is a reasonable one which yields results which are similar to those provided

by the switching Gaussian state space model.

The remainder of this paper is organized as follows. The second section describes

how switching Gaussian state space models can be used to do DMS or DMA. The third

section describes our application. It is divided into sub-sections which: i) discuss some

general issues in combining inflation forecasts from various sources, ii) describe the data,

iii) present empirical results using the switching Gaussian state space approach and iv)

compare the latter approach to DMA and DMS using the methods of Raftery et al (2010).

2 DMA and DMS Using Switching Linear Gaussian

State Space Models

The framework given in (1) is closely related to the switching linear Gaussian state space

model discussed, e.g., in Fruhwirth-Schnatter (2006, pages 393-394 and 406-410) who
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provides several citations, mostly from the engineering literature, of papers which have

used such models. A switching linear Gaussian state space model can be written as:

yt = H
[st]
t θt + εt

θt = F
[st]
t θt−1 + ηt

where yt is observed, εt is N
(

0, σ
2[st]
ε

)
and ηt is N (0,Ση). The errors are independent of

each other and at all leads and lags. st ∈ {1, .., K} follows a Markov switching specifica-
tion, i.e. we have a Markov transition matrix with elements ζ ij = Pr (st = i|st−1 = j) for

i, j = 1, .., K.

We adapt this specification for use with variable selection in TVP regression models

by using particular forms for the system matrices. In particular, we set

H
[st]
t = ZtG

[st] (2)

F
[st]
t = I.

In most of our empirical work, we set Zt = (z1t, .., zKt) to contain K explanatory variables

and define G[st=k] to be the K×K matrix which selects the kthexplanatory variable. That

is, G[st=k] is a matrix of zeros except for the (k, k)th element which is set to one. In the

final subsection of our empirical work, we consider TVP regression models with more

than one explanatory variable and G[st=k] is defined to pick out the appropriate sets of

explanatory variables.

Defined in this way, θt = (θ1t, .., θkt)
′ is a vector of time-varying regression coeffi cients.

The choice F [st]t = I leads to the conventional choice of random walk evolution of these

coeffi cients. We also let Ση be a diagonal matrix with kth diagonal element σ2ηk so that

the regression coeffi cients evolve independently of one another.

In the main part of our empirical work, Zt will contain different forecasts of inflation.

It can be seen that (2) implies that, when st = k, the TVP regression model using the

kth explanatory variable is used. That is, our model space is composed of K models

each containing one explanatory variable. However, we also present some results where

we consider TVP regression models with more than one explanatory variable. We allow

for all combinations of the K explanatory variables, leading to a model space containing

2K − 1 models.

Switching between different TVP regression models is controlled through a Markov
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switching process with switching probabilities given by ζ ij. Thus, the switching Gaussian

state space model, with system matrices defined as in (2), can be used to do DMS or

DMA in the context of single statistical model. And Bayesian methods for posterior

inference (filtering and smoothing) in this model are developed in several places, includ-

ing Fruhwirth-Schnatter (2001a, b). In this paper, we use the algorithm of Fruhwirth-

Schnatter (2001a, b) (see the Technical Appendix for details).

It is worth stressing that, although we use the terminology “model switching”, the

switching Gaussian state space model is a single model and the parameter space retains

the same dimension at all points in time. In our empirical work, θt remains a K × 1

vector for all t. Thus, the problems associated with switching between model spaces of

different dimension (see Green, 1995) do not arise. This is true even if, say, st = 1 for all

t and, hence, a TVP regression model with the first explanatory variable is used in every

period. In such a case, the MCMC draws of θ1t will be produced in a data based manner.

But what about θ2t, .., θKt? For periods when st = 1, they will be drawn from the prior

(i.e. the random walk state equation which controls the time variation of the coeffi cients).

We have found such an algorithm to work well (although an informative prior for each

σ2ηk is required). In earlier work, we considered an alternative specification where Ση was

replaced by Σ
[st]
η which was a singular matrix such that Σ

[st=i]
η is a matrix of zeros except

for the (i, i)th diagonal element. This specification has the property that, if st = i, then

θjt = θj,t−1 for j 6= i. Such a specification did not perform as well in our application and,

hence, we do not include it here.

3 Application: Selecting the Best Inflation Forecasts

3.1 Introduction

The literature on forecasting inflation is voluminous [see, e.g., Faust and Wright (2012)

for a recent survey]. We aim to contribute to the literature on choosing between multiple

forecasts of inflation. In an influential paper, Ang, Bekaert and Wei (2007) compare

various methods for forecasting inflation including surveys (of professional forecasters and

of the public at large) and simple time series forecasting methods. Their main conclusion

about which methods forecast best is pithily summarized in the first two words of their

abstract: “Surveys do!”. Faust and Wright (2012) come to a similar conclusion using

different econometric methods. The purpose of our application is to investigate whether

this conclusion holds in the context of a more formal statistical modelling procedure

involving DMA and DMS. Most importantly, our framework allows us to investigate
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whether the best forecasting model changes over time. After all, it is possible that the

time series econometrician (whose forecasts are based on past patterns in the data) will

forecast well in normal times, but forecast poorly around times of changes such as business

cycle turning points. Professional economists, who can use qualitative events observed

in real time (e.g. the collapse of Lehman Brothers) to aid in their forecasting, may be

better forecasters at turning points. DMS and DMA can directly find patterns such as

these where the best forecasting procedure changes over time or over the business cycle.

Conventional methods, which just aim to find one best forecast procedure, cannot.

3.2 Data

Care must be taken with variable definitions and timing to make sure the forecasts made by

forecasters are matched up with the outcomes they are compared to. Given the influence

of the paper by Ang, Bekaert and Wei (2007), we follow their choices where possible. The

interested reader is referred to Ang, Bekaert and Wei (2007) who discuss the relevant

issues in detail. As a timing convention, note that all the t subscripts used below are for

the times that the forecasts are being made. So, for instance, in 1996Q1 surveys were

taken about inflation over the upcoming year through 1997Q1. These are dated as t =

1996Q1 in the equations below.

Our dependent variable is CPI inflation. Given that inflation forecasts are typically

one-year ahead, we use as our dependent variable an annual inflation rate. To be precise,

our dependent variable, πRt , is the realized value for inflation over the subsequent year

defined as

πRt = πt+1 + ..+ πt+4,

where

πt = log

(
Pt
Pt−1

)
and Pt is the CPI (Consumer Price Index for All Urban Consumers).

We use four different forecasts of annual inflation rates which can be thought of as

coming from four different sets of agents: i) the professional forecasters, ii) consumers, iii)

time series econometricians and iv) a naive agent.

The professionals’ forecasts of inflation are taken from the Survey of Professional

Forecasters (SPF) available through the Federal Reserve Bank of Philadelphia website.

Detailed explanation about this data source are also available on this website. The infla-

tion forecast we use, πSPFt , is the median of the one-year ahead inflation forecasts provided
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by the professionals.

Consumers’forecasts of inflation are taken from the University of Michigan consumer

survey. Surveyed individuals are asked by how much they expect prices to change over

the next 12 months. The inflation forecast we use, πCSt , is the median of their forecasts.

There are dozens of different forecasts of inflation produced by time series econome-

tricians. However, it has proved diffi cult to beat simple forecasting models by much. For

instance, Stock and Watson (2010) argue that it is “exceedingly diffi cult to improve sys-

tematically on simple univariate forecasting models”. In this spirit, to represent the time

series econometrician, we use an autoregressive model. To be specific, πTSt is the forecast

of the time series econometrician using OLS forecasts from an AR(1) model. Forecasts

made at time t are made using information available up to and including time t−1. Given

that πRt is an average over four quarters, this means the model used for these forecasts is:

πRt = α + ρπRt−4 + εt.

Finally, we have our naive agent producing simple no-change forecasts, πNOCt , where

the forecaster simply uses the most recently available annual inflation rate as a forecast

for next year’s inflation. Thus,

πNOCt = πt−1 + ..+ πt−4.

We stress that πTSt and πNOCt will be forecasts made at time t of inflation one year in the

future.

All data except πSPFt is taken from the Federal Reserve Bank of St.. Louis’FRED

database.2 Our forecasts runs from 1981Q3 through 2011Q2 (i.e. the last forecast is made

in 2011Q2 which can be compared the the actual inflation outcome through 2012Q2).

Figure 1 plots the data.

2Where relevant, monthly data has been made into quarterly data by taking the observation for the
last month of the quarter. See Ang, Bekaert and Wei (2007), page 1171.
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Figure 1

In terms of the notation used in Section 2, yt = πRt and Zt =
(
πSPFt , πCSt , πTSt , πNOCt

)
.

3.3 Which Inflation Forecasts are Best?

Our main interest is in which of the four forecasts has been best at each point in

time. To shed light on this, Figure 2 presents smoothed estimates of the probabilities,

Pr
(
st = k|yT

)
for k = 1, .., 4 and t = 1, .., T using the switching Gaussian state space

model.

Our results have some similarities with the general findings of Ang, Bekaert and Wei

(2007) and Faust and Wright (2012). Consumer surveys, in particular, do tend to be

chosen as the best model in many time periods. However, the forecasts of the time series

econometrician also do well at many times. The professional forecasts and the no change

forecasts are less commonly chosen by DMS, but even they become predominant occa-

sionally. However, our methods allow us to see some interesting time variation in forecast

performance. A general pattern that emerges (with some exceptions) is that consumer

surveys forecast best in stable times. The times when the consumers are forecasting poorly

are the early 1980s, 1990, 2005 and post-2007. With the exception of 2005, these are all

recessionary or volatile times.
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In the periods when the consumer survey forecasts receive low probability in Figure 2, it

is typically the time series econometrician’s forecasts which are chosen. The one exception

to this pattern is the disinflationary period of 2008-2009 associated with the financial crisis

and subsequent recession. This is the one period where the professional forecasts and no

change forecasts (receiving roughly equal probability) are being selected by the switching

state space model. An examination of the original data (see Figure 1), reveals that both

of these forecasts adjusted more rapidly to the disinflation which occurred at this time.

However, by the middle of 2009 the professionals and the naive forecasts are again being

beaten by the consumer survey and the time series econometrician.

1985 1990 1995 2000 2005 20100

0.5

1
Smoothed Model Probabilities, Regressor: Consumer Survey

1985 1990 1995 2000 2005 2010
0

0.5

1
Smoothed Model Probabilities, Regressor: Time Series

1985 1990 1995 2000 2005 20100

0.5

1
Smoothed Model Probabilities, Regressor: Professional Forecasters

1985 1990 1995 2000 2005 20100

0.5

1
Smoothed Model Probabilities, Regressor: No Change Forecasts

Figure 2

The model probabilities in Figure 2 are smoothed estimates based on the entire sam-

ple. Such a figure is of interest for a retrospective analysis where the researcher looks

back on past forecast performance. It is also interesting to present filtered estimates,

Pr (st = k|yt), so as to show which forecasts a researcher in time t (given information

available at time t) would have thought were good ones.3 Figure 3 presents these filtered

probabilities. It can be seen that the main patterns in Figure 3 are broadly similar to

3The filtered probabilities are calculated by repeatedly running the MCMC algorithm on an expanding
window of data.
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Figure 2. The consumer survey tends to receive the most probability, followed by the

forecasts of the time series econometrician. Periods where the consumer survey is not se-

lected are usually recessionary or unstable times. The main difference is post-2007 where

the filtered probabilities are very erratic and indicate the no change forecasts would never

have been chosen. The professional forecasters have a brief period of higher probability

shortly after the financial crisis, but it is shorter than in Figure 2.
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0
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1
Filtered Model Probabilities, Regressor: Consumer Survey

1996 1998 2000 2002 2004 2006 2008 2010
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0.5

1
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1996 1998 2000 2002 2004 2006 2008 2010
0
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Filtered Model Probabilities, Regressor: Professional Forecasters

1996 1998 2000 2002 2004 2006 2008 2010
0

0.2

0.4
Filtered Model Probabilities, Regressor: No change Forecasts

Figure 3: Using Switching State Space Model

For the sake of brevity, we do not present parameter estimates but note only that

they are reasonable (e.g. the elements of θt tend to be around one, although there is

some fluctuation over time). Having established that the switching linear state space

model does seem to be a sensible way of doing model selection or model averaging in a

time varying manner, we turn to the question of how it compares to the popular DMA

algorithm of Raftery et al (2010).
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3.3.1 Comparison to DMA and DMS using Forgetting Factors

Raftery et al (2010) introduce an algorithm for doing DMA or DMS which involves the use

of forgetting factors. There has been a recent surge in popularity in using forgetting factor

methods for model averaging with empirical researchers (see, e.g., Dangl and Halling, 2012,

Koop and Korobilis, 2012, Koop and Tole, 2013, McCormick, Raftery, Madigan and Burd,

2012, Nicoletti and Passaro, 2012 and Koop and Korobilis, 2013). Raftery et al (2010,

page 53) stress that their methods are not a special case of a switching state space model

such as the one used in the present paper, but are closely related. The switching state

space model approach involves specification of a matrix of Markov transition probabilities,

ζ ij = Pr (st = i|st−1 = j). The forgetting factor approach does not do so. In cases where

the number of models is very large, parsimony considerations mean fully specifying such a

matrix is not sensible. The switching state space model involves use of MCMC methods.

The forgetting factor approach leads to a filtering algorithm which does not use MCMC.

In large model spaces, the computational burden of MCMC methods mean they need to

be avoided. Nevertheless, the goal of our switching state space model and Raftery et al

(2010)’s approach is the same: to obtain a method for model selection or model averaging

done in a time varying manner.

The references in the preceding paragraph all contain empirical applications with large

model spaces where forgetting factor methods are used. But they do not contain com-

parisons of the forgetting factor approach with a formal Bayesian model which allows for

dynamic model change. With large model spaces this would be computationally infeasi-

ble. But with a small model space such as the one used in our empirical application such

a comparison can be done. Our aim is to shed light on whether forgetting factor methods

lead to similar empirical results as a formal Bayesian approach.

Since forgetting factor methods are established in the literature, we will not provide

a description of them here. The reader unfamiliar with DMA using forgetting factors is

referred to Raftery et al (2010) or they can read the brief description provided in Appendix

B of this paper. Specification details, such as forgetting factor choices, are discussed in

this appendix.

It is important to note that the algorithm of Raftery et al (2010) is a filtering algo-

rithm. As described in Appendix B, It provides us with πt|t,j which is the probability that

model j generated at time t, given information through time t. This a similar concept to

Pr (st = k|yt) which can be obtained from our switching Gaussian state space model by

running our MCMC algorithm using data through time t. Both are model probabilities

conditional on information available at time t. These are plotted in Figure 4 for the same

four models used in the preceding sub-section.
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Figure 4 should be compared to Figure 3. In a very broad sense, Figures 3 and 4 tell

the same story. Most of the time the consumer surveys are providing the best forecasts

for inflation. The times when the consumer surveys are not forecasting best tend to be

unstable or recessionary times. The forecasts of the time series econometrician also receive

appreciable weight, especially at the beginning and end of the sample.

However, there are many details in which Figures 3 and 4 differ. Most prominently,

the professional forecasters do better in Figure 4 than they did in Figure 3. There are

times, most particularly at the beginning and end of the sample, where the forgetting

factor approach allocates considerable weight to their forecasts. The second interesting

difference is that the switching state space model seems more capable of capturing abrupt

switches in model probabilities. For instance, there are several times in Figure 3 when

the probability attached to the consumer surveys switched abruptly from near one to

near zero or vice versa (e.g. around 1990, 2000 and 2005). These abrupt switches do not

appear using the forgetting factor approach. However, the abrupt switch associated with

the financial crisis does appear in both Figures 3 and 4.

What should the researcher using the forgetting factor approach to DMA make of

our results? Insofar as the forgetting factor approach is viewed as a method intended to

approximate a switching Gaussian state space model, it suggests the approximation is not

bad. However, it is far from providing a close reproduction of exact results provided by a

formal Bayesian model. Of course, as we stress above, DMA with forgetting factors is not

simply a special case of a switching linear Gaussian state space model and cannot simply

be interpreted as an approximation (e.g. where parameters are replaced by estimates).

Nevertheless, since the two methods do have the same goal, it is not unreasonable to

compare them and to hope that they will tell the same story. In this vein, we find our

results (from a small model space) moderately encouraging for the user of DMA with

forgetting factors working with a large model space.
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Figure 4: Using Raftery et al (2010)

3.4 Forecasting Comparison of Different Implementations of DMA/DMS

In this sub-section we compare the one-step ahead forecasting performance of our different

implementations of DMA and DMS. For the switching Gaussian state space model, we

repeatedly run our MCMC algorithm on an expanding window of data to provide forecasts

of yt using information available at time t−1 and use this to calculate the one-step ahead

predictive density. The output from this procedure can be thought of as a DMA procedure

where we are averaging over st = {1, .., 4}. We can also obtain the predictive density for
the value of st with highest posterior probability, a strategy analogous to DMS.

The forgetting factor approach can be used to do either DMA or DMS (see Appendix

B) and involves calculating πt|t−1,j for j = 1, .., K and using these probabilities either to

select a single model at each point in time or average across forecasts of all models. The

main results in this paper make the same forgetting factor choices as in the preceding sub-

section of α = λ = 0.99. However, we also present results for α = λ = 1 and α = λ = 0.95.

The first of these Raftery et al (2010) show to be equivalent to BMA run on an expanding
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window of data for a constant coeffi cient model. The second of these allows for a large

degree of model switching and time variation in parameters. With regards to the error

variance, we use both heteroskedastic and homoskedatic estimates (see Appendix B). The

former of these are obtained using a rolling window of 10 observations, the latter an

expanding window of data.

To evaluate our forecasts we use mean squared forecast errors (MSFEs) and mean

absolute forecast errors (MAFEs) which evaluate the quality of the point forecasts. MSFEs

for any approach are presented relative to the MSFE of the no change forecast. To

evaluate the quality of the entire predictive density, we also present sums of log predictive

likelihoods (logPL). We evaluate our forecasts over the period 1996Q1 to the end of the

sample.

Several patterns emerge from Table 1. The sum of log predictive likelihoods would be

the preferred Bayesian method of forecast comparison and it indicates that the forgetting

factor approach forecasts slightly better than the switching linear Gaussian state space

model, provided we allow for heteroskedasticity and do not choose forgetting factor values

which allow for too much variation in the coeffi cients or too much model switching. That

is, the forgetting factor method using the benchmark α = λ = 0.99 choices used by

Raftery et al (2010) lead to the best forecast performance (although the α = λ = 1 which

leads to conventional BMA in a constant coeffi cient model on an expanding window of

data forecasts only slightly worse). Homoskedastic variants of DMA or DMS forecast

quite poorly, emphasizing the importance of allowing for heteroskedasticity.

However, if we look at MSFEs and MAFEs, then a different pattern emerges where the

switching linear Gaussian state space model forecasts appreciably better than forgetting

factor approaches. Thus, the former methods are better at producing point forecasts.

However, forgetting factor methods are clearly doing well in getting higher order moments

and the entire shape of the predictive density correct.

With regards to issue of whether model averaging or model selection is better, for the

switching linear Gaussian state space model, DMA methods are slightly to be preferred.

However, with forgetting factor approaches, the forecast performance of DMA and DMS

is very similar to one another (and, indeed, is often identical to three decimal places).
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Table 1: Comparison of Forecasting Performance

Approach MSFE MAFE logPL

Switching Linear Gaussian State Space Model

DMA 0.401 0.514 -91.48

DMS 0.431 0.551 -91.81

Forgetting Factor Approaches (heteroskedastic)

DMA, α = λ = 1 0.600 0.656 -90.89

DMA, α = λ = 0.99 0.598 0.655 -90.77

DMA, α = λ = 0.95 0.637 0.680 -93.10

DMS, α = λ = 1 0.600 0.657 -90.89

DMS, α = λ = 0.99 0.598 0.655 -90.75

DMS, α = λ = 0.95 0.653 0.682 -92.46

Forgetting Factor Approaches (homoskedastic)

DMA, α = λ = 1 0.637 0.674 -110.60

DMA, α = λ = 0.99 0.647 0.673 -109.53

DMA, α = λ = 0.95 0.657 0.698 -105.63

DMS, α = λ = 1 0.637 0.674 -110.60

DMS, α = λ = 0.99 0.619 0.664 -109.52

DMS, α = λ = 0.95 0.682 0.717 -109.73

In summary, our forecasting results are somewhat mixed. For the researcher interested

in point forecasts, the fully Bayesian estimation procedure for switching state space models

is to be preferred since it is leading to substantially lower MSFEs and MAFEs. However,

for the researcher interested in the entire predictive density, DMA and DMS methods

using forgetting factors are forecasting very well indicating that the approximations and

compromises inherent in forgetting factor approaches do not carry a large cost with them.

3.5 Forecasting Comparison of Different Implementations of DMA/DMS

in a Larger Model Space

In the preceding sub-sections, we used a small model space containing four models. How-

ever, the researcher may often wish to do DMA or DMS in larger model spaces. Accord-

ingly, in this section, we investigate the performance of our two ways of doing DMA/DMS

in the larger model space containing 15 models. That is, we augment our preceding model

space with all TVP regression models containing 2, 3 or 4 explanatory variables. For the

sake of brevity, we only present forecast results. However, we note that smoothed and
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filtered estimates of model probabilities, comparable to Figures 2 and 3 indicate that

consumer surveys and time series econometrics forecasts still dominate (sometimes in-

dividually, sometimes in the model containing the two explanatory variables πCSt and

πTSt ).

Table 2 presents sums of log predictive likelihoods, MSFEs and MAFEs for the same

set of approaches as in Table 1. The message of Table 2 is clear. DMA or DMS done using

forgetting factor methods is yielding virtually the same results in Tables 1 and 2. However,

the forecasting performance of approaches based on the switching linear Gaussian state

space model have deteriorated substantially.

In this empirical application, where we usually find models with a single explana-

tory variable to forecast best, the parsimonious forgetting factor approach is successfully

choosing these models and ignoring the less parsimonious models with several explanatory

variables. However, the switching linear Gaussian state space approach is not. Remember

that the latter approach involves estimating a 15× 15 matrix of transition probabilities.

With our relatively short data set, the switching Gaussian state space model is over-

parameterized and this is leading to poor forecasts.

It is worth noting, too, that the computational time associated with forecasting with

this larger version of a switching Gaussian state space model is quite substantial (e.g.

several hours), whereas the forgetting factor approach has a trivial computational burden

(e.g. several seconds).
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Table 2: Comparison of Forecasting Performance

in Larger Model Space

Approach MSFE MAFE logPL

Switching Linear Gaussian State Space Model

DMA 0.614 0.982 -113.53

DMS 0.613 0.827 -98.64

Forgetting Factor Approaches (heteroskedastic)

DMA, α = λ = 1 0.600 0.656 -90.89

DMA, α = λ = 0.99 0.598 0.655 -90.77

DMA, α = λ = 0.95 0.637 0.680 -93.10

DMS, α = λ = 1 0.600 0.656 -90.88

DMS, α = λ = 0.99 0.598 0.655 -90.75

DMS, α = λ = 0.95 0.652 0.682 -92.46

Forgetting Factor Approaches (homoskedastic)

DMA, α = λ = 1 0.637 0.674 -110.60

DMA, α = λ = 0.99 0.647 0.673 -109.53

DMA, α = λ = 0.95 0.657 0.698 -105.63

DMS, α = λ = 1 0.637 0.674 -110.60

DMS, α = λ = 0.99 0.619 0.664 -109.52

DMS, α = λ = 0.95 0.682 0.717 -109.73

4 Conclusions

The Bayesian empirical researcher often faces a trade-offbetween the desire to work with a

fully specified Bayesian model and the computational burden that use of MCMC methods

imposes. In the DMA literature, when the researcher works with large model spaces, it

is common to use forgetting factor methods because the computational burden of doing

MCMC is simply too great. In this paper, we have worked with relatively small model

spaces (where MCMC methods are computationally feasible) to investigate the possible

consequences of using approximate forgetting factor methods. We set up a fully specified

Bayesian approach, using a switching linear Gaussian state model, which allows for model

switching or model averaging in time-varying parameter models. This can be thought of

as an alternative to doing DMA using forgetting factor methods.

In a small empirical application involving inflation forecasting using four models, our

overall conclusion is that forgetting factor methods and the switching Gaussian state

space model are leading to similar empirical results. In terms of model selection, both
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approaches indicate that the consumer survey provides the best forecasts of inflation

most of the time. However, both of them find that time series forecasts and surveys of

professionals do tend to forecast better at particular periods (e.g. the recent financial

crisis and subsequent recession). In terms of forecasting, the two approaches exhibit a

similar performance if we use sums of log predictive likelihoods as a metric. However,

MSFEs and MAFEs show a deterioration in forecasts for forgetting factor approaches.

When we move to a larger model space of 15 models, the forecasting performance of

the switching linear Gaussian state space model deteriorates substantially. This contrasts

with the forgetting factor approach where forecast performance is unaffected by the move

to a larger model space. Thus, the switching Gaussian state space model can become

over-parameterized even with model spaces of this size.

There are many applications [e.g. Koop and Korobilis (2012, 2013)] where the model

space is so large that the use of MCMC methods is impossible. The only feasible way of

doing DMA or DMS would involve some sort of approximation such as that involved in the

forgetting factor approach. Insofar as the results of the present paper (based on relatively

small model spaces), extend to large model spaces, they should provide reassurance that

forgetting factor methods are providing reasonable results.
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AppendixA: Bayesian Inference in the Switching LinearGaussian
State Space Model
The switching linear Gaussian state-space model the we adopt is of the form:

p (s1 = k) = 1
K

ξjk = p (st = k|st−1 = j)

θ1 ∼ N (0K , 2IK)

θt = θt−1 + ηt

yt = ZtG
[st=k]θt + εt,

for t = 1, .., T and j, k = 1, .., K. Error assumptions and definitions of st ∈ {1, .., K} , yt, Zt
and G[st=k] are given in Section 2. The remaining parameters of the model are ψ =

(σ2η1, . . . , σ
2
ηK , σ

2[1]
ε , . . . , σ

2[K]
ε , ξ11, .., ξKK)′. We adopt a notational convention for data and

states such that subscripts denote a particular time period and superscripts denote all

periods up to that time period. For instance, st = (s1, .., st)
′ denotes all regime indicators

up to time t.

We use the Gibbs sampler that sequentially draws from p
(
θT |yT , sT , ψ

)
, p
(
sT |yT , θT , ψ

)
and p

(
ψ|yT , sT , θT

)
. This technical appendix briefly describes each of these conditional

posterior densities. The time-varying parameters are drawn from p
(
θT |yT , sT , ψ

)
using

the algorithm of Chan and Jeliakov (2009). And p
(
sT |yT , θT , ψ

)
is drawn as in Fruhwirth-

Schnatter (2001a,b). We refer the reader to page 420 of Fruhwirth-Schnatter (2006) for

specific details of implementation. Note that this algorithm delivers p
(
yt|st, θt, ψ

)
which,

when averaged over Gibbs draws, provides us with an estimate of the predictive likelihood.

For p
(
ψ|yT , sT , θT

)
we use conditionally conjugate priors which lead to the following

conditional posteriors. Given inverted Gamma priors for σ2ηk (for k = 1, .., K) with prior

hyperparameters c0k and C0k we obtain and inverted Gamma posterior with arguments:

ck(S) = c0k + T
2
, Ck(S) = C0k +

∑T
t=1(θk,t+1−θk,t)

2

2
.

We set the prior hyperparameters to c0k = 5 and C0 = [0.08, 0.148, 0.45, 0.53].

For σ2[k]ε we also use inverted Gamma priors leading to inverted Gamma conditional

posteriors. We set prior hyperparameters c[k]0ε andC
[k]
0ε to c

[k]
0ε = 5 andC [k]0ε = [0.168, 1.480, 7.2, 10.0],

for k = 1, .., K. The resulting posterior has arguments

c
[k]
ε (S) = c

[k]
0ε + Nkk

2
, C

[k]
ε (S) = C

[k]
0ε + 1

2

∑T
t:st=k

(
yt − ZtG[st=k]θt

)2
,
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where Njk counts the number of transitions from j to k. If j = k it counts the number of

periods spent in regime k.

Finally, let ξ be the matrix of Markov transition probabilities ξjk and let ξj be the j
th

row of this matrix. The conditional conjugate prior for each row is Dirichlet:

ξj ∼ D(ej1, . . . , ejK), j = 1, . . . , K.

Following Fruhwirth-Schnatter (2001b), we adopt a prior reflecting a belief that the prob-

ability of staying in a regime is greater than the probability of transition to a new regime.

Thus, we set ejj, j = 1, . . . , K corresponding to the main diagonal to be 4. Hyperpara-

meters off the main diagonal, eji, j 6= i, are set to 0.33. With this choice of prior, the

conditional posterior is also Dirichlet with

D(ej1 +Nj1, . . . , ejK +NjK), j = 1, . . . , K.
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Appendix B: Dynamic Model Averaging Using Forgetting Fac-
tors
This appendix briefly outlines the main features of the DMA algorithm of Raftery et

al (2010) as we implement it in this paper.

Suppose we have j = 1, .., K TVP regression models,

yt = Z
(j)
t θ

(j)
t + ε

(j)
t

θ
(j)
t+1 = θ

(j)
t + η

(j)
t ,

ε
(k)
t is N

(
0, H

(j)
t

)
and η(k)t is N

(
0, Q

(j)
t

)
. We replace H(j)

t by a simple estimate (the sum

of squared errors divided by sample size).

If Q(j)t were known, then an individual model could be estimated in a straightforward

manner using the Kalman filter. Q(j)t appears in the Kalman filtering prediction equation.

In particular, if yt = (y1, .., yt)
′, then:

θ
(j)
t |yt−1 ∼ N

(
βt|t−1, Vt|t−1

)
,

where

Vt|t−1 = Vt−1|t−1 +Q
(j)
t .

This is the only place where Qt enters the Kalman filtering formulae. If the equation for

Vt|t−1 is replaced by:

Vt|t−1 =
1

λ
Vt−1|t−1,

then MCMC methods can be avoided. λ is a forgetting factor. Forgetting factors have

long been used in the state space literature to simplify estimation. There are many ways of

justifying the use of forgetting factors as leading to sensible approximations. For instance,

their use in this context implies that observations j periods in the past have weight λj.

An alternative way of interpreting λ is to note that it implies an effective window size of
1
1−λ .

The contribution of Raftery et al (2010) was to develop a filtering algorithm which

also used a forgetting factor and allowed for DMA or DMS to be done. These involve

calculating πt|t−1,j which is the probability that model j should be used for forecasting at

time t, given information through time t− 1. DMA arises if we average forecasts over all

models using πt|t−1,j as weights. DMS arises if we choose the model with the highest value
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for πt|t−1,j. A recursive algorithm involving πt|t,j and πt|t−1,j can be run, beginning with

π0|0,j in order to provide the necessary model probabilities. Note that πt|t−1,j is a similar

concept to the Pr (st = k|yt−1) used in the switching state space model and can be used
in the same manner.

Raftery et al (2010) derive a model updating equation of:

πt|t,j =
πt|t−1,jpj (yt|yt−1)∑J
l=1 πt|t−1,lpl (yt|yt−1)

,

where pj (yt|yt−1) is the predictive likelihood for model j produced by the Kalman filter.
However, instead of using a Markov transition matrix to model the probability of switching

between models, a model prediction equation involving a forgetting factor α is used:

πt|t−1,j =
παt−1|t−1,j∑J
l=1 π

α
t−1|t−1,l

.

This algorithm has a large advantage in that no MCMC is required and a complete

specification of a Markov transition matrix is not required. It is computationally effi cient,

involving only the filtering algorithms just described. Its properties are described in more

detail in Raftery et al (2010).

This algorithm requires selection of α, λ, π0|0,j and initial conditions for the time

varying parameters. For the last, we use the same values as for the switching state space

models. For π0|0,j, we use the noninformative choice of π0|0,j = 1
K
. The main results in

the paper set α = λ = 0.99, although (as noted in the body of the paper) in our forecast

comparison exercise we experiment with different values. These forgetting factors are not

directly comparable to the parameters in the switching state space models. But, loosely

speaking, forgetting factors and priors in switching state space models are both chosen to

allow for a moderate degree of parameter and model change.
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