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Abstract

A model is presented for design of a thickener for solid-liquid separa-

tion where the flocs or aggregates within the solid-liquid suspension undergo

an aggregate densification process due to the action of rakes. This aggre-

gate densification facilitates suspension dewatering. The novel feature of the

model is that it manages to couple together a hindered settling zone (higher

up in the thickener, where the flocs are separated from one another, and the

suspension cannot bear weight) and a gelled suspension zone (lower down in

the thickener, where the flocs are packed together, and the suspension is able

to bear weight). The model determines solids fraction profiles throughout the

hindered settling zone and gelled suspension zone, and also gives zone heights
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and residence times. Parametric investigations using the model are carried

out for different suspension fluxes (which influence the solids fluxes and un-

derflow solids fractions attained), and also for different specified amounts of

and rates of aggregate densification.
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Highlights

• A continuous thickener for solid-liquid separation is modelled

• Flocs within the thickener undergo aggregate densification facilitating

dewatering

• Model couples hindered settling zone and gelled suspension zone within

thickener

• Depending on operating regime, thickener height can be dominated by

either zone

• Gelled zone dominates as suspension flux through thickener is reduced

1. Introduction

The need to dewater solid-liquid suspensions to reduce volumes of solid-

liquid waste and extract clean water is common in many industries (e.g. min-

erals processing (Boger, 2009; Jones and Boger, 2012), wastewater (Martin,

2004), dairy processing (Matsche et al., 2002), pulp and paper (Pere et al.,
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1993)). Continuous thickeners are amongst the devices used for achieving

such dewatering (Bustos et al., 1999).

Theories exist in literature for design of thickeners to achieve a given

target solids flux and/or a given target underflow solids fraction (Usher and

Scales, 2005; Diehl, 2001, 2008, 2012). Traditionally (Talmage and Fitch,

1955; Fitch, 1966) these have been based around Kynch theory (Kynch,

1952). This theory recognises (i) that solids settle due to buoyancy through

being heavier than surrounding liquid, (ii) that buoyancy is balanced by vis-

cous drag, and moreover (iii) that settling becomes hindered as the solids

fraction in the suspension increases. Whilst the Kynch theory approach does

indeed predict solids fluxes (and hence thickener cross sectional areas for

a given volumetric flow rate of incoming suspension (Talmage and Fitch,

1955)), it does not predict the thickener heights.

Moreover one shortcoming of Kynch theory is that it tends to lose appli-

cability as the solids fraction rises. Usually in dewatering applications one

deliberately adds flocculants to the suspension, and these cause solid parti-

cles to aggregate together into flocs, with these flocs then settling faster than

individual solid particles would (Heath et al., 2006). As the overall solids

fraction becomes high enough however, the flocs can themselves network to-

gether into a weight bearing gel. Network stresses that oppose settling then

develop in the gel (Buscall and White, 1987), meaning that buoyancy and

viscous drag are no longer in balance.

Thickener design can then be achieved via Buscall and White theory (Bus-
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call and White, 1987; Landman et al., 1988; Bürger and Concha, 1998). This

theory (unlike Kynch theory) is able to predict thickener heights (Usher and

Scales, 2005), or more specifically it is able to predict the height of a consoli-

dated bed of gelled suspension thereby setting a lower bound for the possible

thickener height. The stronger the weight bearing strength of the gelled

suspension, the taller the thickener must be.

Yet another complication one encounters during thickening is that the

aggregates or flocs can change their structure in real time during the thick-

ening process. This can happen as a result of the flocs being subjected to

shear within a thickener, e.g. due to the action of rakes (Spehar et al., 2014;

Gladman et al., 2010). Shear leads to so called aggregate densification, i.e.

individual aggregates bind together more tightly (Farrow et al., 2000; Usher

et al., 2009; van Deventer et al., 2011), which is highly beneficial for the

dewatering process. Not only are wider channels opened up between flocs

facilitating dewatering, but individual flocs also tend to lose contact with

their neighbours, decreasing the suspension’s weight bearing strength hence

promoting consolidation (Usher et al., 2009; van Deventer et al., 2011).

Aggregate densification thereby allows a given thickener to achieve higher

solids fluxes and/or higher underflow solids fractions than before, or alter-

natively allows redesign of a less tall thickener. Given the importance of

aggregate densification, a number of studies have been dedicated to deter-

mining how to incorporate it into thickener design procedures (Usher et al.,

2009; van Deventer et al., 2011; Zhang et al., 2013a,b). By and large these
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studies focussed on incorporating aggregate densification into the Buscall

and White framework. Apart from the fact that aggregate densification is

predicted to enhance thickener performance significantly, the approach is

conceptually not very different from conventional Buscall and White theory.

Recently however a study has appeared (Grassia et al., 2014) suggest-

ing how to incorporate aggregate densification into the framework of Kynch

theory. This study would apply to situations where the degree of thickening

required (measured by a target underflow solids fraction) is relatively modest

so that either the underflow does not form a gel (Spehar et al., 2014) or else

it is just barely gelled, with very significant amounts of ungelled material

elsewhere in the thickener. Alternatively the study of Grassia et al. (2014)

could be considered to correspond to a case where a particularly high solids

flux is required (since there is known to be a trade-off between solids flux

achieved and solids fraction attained during thickening (Usher and Scales,

2005)). In contrast to conventional Kynch theory (which as mentioned ear-

lier does not predict thickener heights) this recent study (Grassia et al., 2014)

combining aggregate densification with Kynch theory actually managed to

make predictions for thickener heights. Specifically it predicted the height

of a hindered settling zone, a region throughout which the suspension is not

gelled. There still might be a consolidated bed of gelled suspension very close

to the underflow, but Grassia et al. (2014) assumed this to be of negligible

thickness compared to the hindered zone.

Even though the effects of aggregate densification have been considered
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upon ‘ungelled’ hindered settling zone heights (via Kynch theory (Grassia

et al., 2014)) and upon gelled suspension bed heights (via Buscall and White

theory (Usher et al., 2009; Zhang et al., 2013a,b)), to date there has never

been a study which combines the two theories together so as to design a

thickener subject to aggregate densification incorporating both a hindered

settling zone and a consolidated bed each of which make a significant contri-

bution to the overall height. Indeed it is not even clear that, in the presence

of aggregate densification, it is always feasible to combine the two theories

together. Establishing under what conditions the theories can be combined,

and performing design calculations using the combined theories are the topics

of the present work.

This study is laid out as follows. Section 2 details the separate theories

of thickener design incorporating aggregate densification (Kynch vs Buscall

and White), after which section 3 explains how to match those theories to-

gether: matching involves comparing the solids fraction that Kynch theory

determines in the hindered settling zone to the solids fraction at which the

suspension starts to form into a weight bearing gel (the top of the gelled

suspension zone according to Buscall and White theory). A number of case

studies are set up in section 4, and results from the case studies are presented

in section 5. Finally conclusions are offered in section 6.
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2. Theory

This section is laid out in three parts. The first part (section 2.1) de-

scribes thickener design using Kynch theory, and in particular how aggregate

densification modifies the theory: the reader is referred to Grassia et al.

(2014) for details. The second part (section 2.2) is analogous but focusses on

Buscall and White theory with aggregate densification: the reader can refer

to Usher et al. (2009); van Deventer et al. (2011); Zhang et al. (2013a,b) for

full details. The third part (section 2.3) explains how to cast the system in

dimensionless form, indicating which dimensionless scalings are most useful

for which zone of the thickener.

2.1. Kynch theory in the presence of aggregate densification

The key element of Kynch theory (Kynch, 1952) (that applies to ungelled

suspensions) is a material property of the suspension called the hindered

settling function (Usher and Scales, 2005; Lester et al., 2005). This governs

how the effective frictional force on settling solids increases as a function of

solids fraction. This hindered settling function is denoted by R(φ) where φ

is the solids volume fraction. Usually R(φ) is a sharply increasing function

of φ (Grassia et al., 2008).

According to Kynch theory, the batch settling or ‘free settling’ flux of
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solids (denoted qfs) is related
1 to R(φ) via (Lester et al., 2005)

qfs =
∆ρ g φ(1− φ)2

R(φ)
(1)

where ∆ρ is the density difference between solid and liquid (assumed to equal

2200 kgm−3 here), and where g is acceleration due to gravity (9.8m s−2). In

the case of a thickener there is a suspension flux qs flowing through the

thickener in addition to settling of solids, and as a result the total underflow

flux of solids qu becomes

qu = qsφ+ qfs, (2)

and where moreover the underflow solids fraction φu is qu/qs. Usually design

proceeds (Diehl, 2001, 2008; Grassia et al., 2014) by first selecting qs, and

then finding a target qu that corresponds to a local minimum of equation (2)

with respect to φ. That the right hand side of equation (2) can admit a local

minimum follows from the functional form of qfs in equation (1). This van-

ishes for φ = 0, then grows as φ increases, but starts to decrease again owing

to the very sharp increases in R(φ). In the domain where qfs is decreasing, if

dqfs/dφ happens to attain the value −qs, then a necessary condition is met

for a local minimum in equation (2).

Now consideration must be given as to how the presence of aggregates

1The (1−φ)2 term in the numerator of equation (1) arises from the solids batch settling
speed being less than the solid-to-liquid velocity difference, and the pressure field in the
liquid providing more upthrust than a purely hydrostatic field would.
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(i.e. flocs) affects the above picture. It is supposed (Usher et al., 2009) that

aggregates have a solids fraction φagg that in general differs from the (overall)

solids fraction φ. The ratio φ/φagg represents the fraction of space filled by

flocs. In the case of interest in the current section, i.e. ungelled suspensions,

flocs must be not in contact with one another so φ/φagg must be strictly less

than a close packing fraction (that following Usher et al. (2009); Zhang et al.

(2015) is assumed to equal 0.6).

In the presence of aggregate densification, φagg becomes a function of

the residence time tres that flocs spend in the system. Following the theory

of Usher et al. (2009); van Deventer et al. (2011) first aggregate diameters

(denoted dagg) are determined, and these are then related to φagg. Specifically

it is assumed that during densification aggregate diameters dagg follow an

empirical law

dagg = dagg,∞ + (dagg,0 − dagg,∞) exp(−A tres) (3)

where dagg,0 is the ‘undensified’ diameter, dagg,∞ is the ‘fully densified’ di-

ameter2, and A is a densification rate parameter. In cases where aggregate

densification is produced by raking the suspension, A depends on the rate of

raking. Potentially aggregate densification could also be sensitive to solids

concentration (Spehar et al., 2014), and since solids concentration varies with

2‘Fully densified’ does not imply that the solids in the aggregate are themselves close
packed. It merely means that the aggregate diameter has ceased to change with time even
though the aggregate continues to be subject to shear.
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position in the thickener, and since position reached depends on residence

time tres, potentially A could become a function of tres: such complications

will however be neglected here. Following literature (van Deventer et al.,

2011; Zhang et al., 2013a) it is assumed dagg,∞/dagg,0 = 0.9 and (in what

follows) two different values of A are also considered, namely A = 0.001 s−1

and A = 0.01 s−1. Conservation of mass of solids in each aggregate whilst

the aggregates densify implies

φagg = φagg,0d
3
agg,0/d

3
agg (4)

where φagg,0 is the initial ‘undensified’ solids fraction in the aggregates that

is taken as in Usher et al. (2009) to equal 0.1667.

The aggregate densification theory of Usher et al. (2009) explains how

densification causes wider channels to be opened up between aggregates

which results in lower frictional drag and faster aggregate settling. The

hindered settling function R now becomes a function of both φ and φagg. In

particular, at any given φ, the function R decreases as φagg increases. The

theory then specifies how to relate a densified hindered settling function R

to an undensified one (which is denoted R0).

Following van Deventer et al. (2011), a functional form for R0 represen-

tative of a minerals tailings slurry is adopted

R0 =
RStokes,0

φagg,0

(φ+ rg)
rnr−rn

g (5)
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where RStokes,0 is the initially undensified hindered settling function of an

isolated aggregate or floc, and rg and rn are fitting parameters. The settling

speed of the isolated aggregate or floc (denoted uStokes,0) is (by definition)

∆ρ g/ limφ→0R0 where ∆ρ is the density difference between solids and liquid,

and where g is gravitational acceleration, the above definition applying even

though the floc itself is not entirely composed of solids. Note that this result

for an isolated floc can also be written φagg,0∆ρ g/RStokes,0, the factor φagg,0

in the numerator reflecting that the effective density difference between a

floc and the liquid is less than the solid-liquid density difference. Values are

assigned as (Zhang et al., 2013a,b) RStokes,0 = 260469Pa sm−2, rg = 0.05,

rn = 5, with in addition φagg,0 = 0.1667 as mentioned earlier. The theory

then gives (Usher et al., 2009)

R =
(1− φ)2R0(φagg)RStokes,0Dagg

(

φagg,0R0(φagg)(1− φ/φagg)
2/ragg(φ/φagg) +

(RStokes,0Daggφ/φagg)(1− φagg)
2
)

(6)

where Dagg is the ratio dagg/dagg,0 and where ragg is the aggregate hindered

settling factor (a function of φ/φagg) given by

ragg =
φagg,0(1− φ/φagg)

2R0(φagg,0)R0(φagg,0φ/φagg)

RStokes,0

(

R0(φagg,0)
(

1− φagg,0φ/φagg

)2
−

φ φ−1
agg(1− φagg,0)

2R0

(

φagg,0φ/φagg

))

. (7)

Graphs of R vs φ (or more precisely of a dimensionless quantity Rs de-
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fined as R/RStokes,0 vs φ) in the undensified and fully densified state are given

in Figure 1 (note the log scale on the vertical axis). It is clear that the R

vs φ curves have the expected properties, namely R is a rapidly increasing

function of φ and the densified R vs φ is less than the undensified one. Note

that in the limit as φ → 0, the hindered settling function R evaluates to

DaggRStokes,0/φagg,0, the leading factor Dagg reflecting the fact that the fric-

tional drag on an isolated aggregate is reduced if its diameter decreases owing

to densification, whilst the buoyancy force is unchanged (the mass of solids

in the aggregate being conserved). Away from the φ → 0 limit, reductions

in R due to aggregate densification can be even more substantial than just

the Dagg factor referred to above: in fact the main effect (Grassia et al.,

2014; van Deventer et al., 2011) upon equation (6) is a large reduction in

the value of the term ragg, which according to equation (7) involves evaluat-

ing R0 at an argument φagg,0φ/φagg, instead of at φ. Since R0 is a function

that, according to equation (5), decreases rapidly as its argument decreases,

even modest decreases in the ratio φagg,0/φagg can lead to large decreases in

R0(φagg,0φ/φagg), and hence large decreases in ragg and R.

These decreases in R at any given φ (in response to increasing amounts of

aggregate densification) would clearly lead to increases in qfs and qu according

to equations (1)–(2). The procedure developed in Grassia et al. (2014) was to

suppose instead that φ must change in response to aggregate densification, in

order to keep qu spatially uniform across a hindered settling zone: this gives

a profile of φ values across the hindered settling zone where it is necessary
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to choose a branch of solutions such that φ increases with increasing depth.

One still sets the qu value by minimising equation (2) but this minimisation

is applied only at one point, namely the bottom of the hindered settling

zone (Grassia et al., 2014) with tres in equation (3) now denoting the residence

time spent traversing that zone.

2.2. Buscall and White theory in the presence of aggregate densification

Buscall and White theory requires, as well as the hindered settling func-

tion discussed above, an additional material property known as the compres-

sive yield stress (Buscall and White, 1987; Usher and Scales, 2005). This is

a measure of the compressive load that needs to be placed on a suspension

to make it start consolidating. It is denoted by Py(φ).

It is possible moreover (Landman and White, 1994) to identify a par-

ticular solids fraction called the gel point that is denoted φg. If φ < φg

the suspension is ungelled, and Py(φ) is (by definition) identically zero. If

φ > φg however, Py is greater than zero, and moreover Py is a rapidly in-

creasing function of φ.

In the presence of aggregate densification (Usher et al., 2009; van Deventer

et al., 2011), Py becomes sensitive to the values of both φ and φagg. Tighter

binding of individual aggregates (i.e. an increase in φagg) implies less contact

between aggregates and hence less compressive strength of the suspension

(i.e. lower Py). Moreover an increase in φagg implies an increase in φg and

hence a wider domain of φ values for which Py(φ) is identically zero. This is
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because the ratio φg/φagg is assumed to be fixed and to correspond to a close

packing fraction 0.6 as mentioned earlier.

Following literature (van Deventer et al., 2011) a functional form is chosen

for the undensified compressive yield stress to be typical of a minerals tailings

slurry. This undensified compressive yield stress is denoted by Py,0(φ) and

selected as

Py,0 =
a0(φ− φg,0)

(m+ φ− φg,0)(φcp − φ)n0

(8)

where (Zhang et al., 2013a, 2015) a0 = 3.7914 Pa, m = 0.0363, n0 = 10.8302

and φcp = 0.8. Moreover φg,0 = 0.1 is the undensified gel point: observe that

this is 0.6 times φagg,0.

The densified functional form is chosen (Zhang et al., 2013a) to have a

similar functional form to the one given above

Py = Py,0(φagg)
(m+ φagg − φg)

(m+ φ− φg)

(φ− φg)

(φagg − φg)

(

φcp − φagg

φcp − φ

)n1

(9)

where the densified gel point φg is φg,0d
3
agg,0/d

3
agg (with dagg,0 and dagg being

respectively densified and undensified aggregate diameters) and where

n1 = (φcp − φagg)

(

P ′

y,0(φagg)

Py,0(φagg)
+

1

m+ φagg − φg

−
1

φagg − φg

)

. (10)

Here P ′

y,0(φagg) is the derivative of Py,0 with respect to φ evaluated at φagg.

Plots are given of the undensified and fully densified compressive yield

stress (or more precisely of a dimensionless quantity py defined as Py/a0)
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in Figure 2. The expected features are observed, i.e. rapid increase in Py

with increasing φ, and also the densified Py being less than the undensified

one. Similar comments apply to Py as already applied to R, i.e. even a com-

paratively modest change in φagg (and consequently in φg which is directly

proportional to φagg) can lead to large relative changes in Py. This is partic-

ularly apparent for φ values which are just very slightly above the densified

φg (leading to a very tiny Py) but which are substantially above φg,0 (and

hence having a substantial Py,0 value).

The equation used to design thickeners according to Buscall and White

theory with aggregate densification is as follows (Zhang et al., 2013a)

dφ

dtres
=

∆ρ g qu − (1− φ)−2R(φ, tres) q
2
u (φ−1 − φ−1

u )− ∂Py(φ, tres)/∂tres
∂Py(φ, tres)/∂φ

(11)

and corresponds to a balance between buoyancy, viscous drag and network

stresses: the presence of network stresses in Buscall and White theory im-

plies that solids flux is no longer given by the simple Kynch theory form

in equation (2). In the above φu is the underflow solids fraction and qu is

the underflow solids flux, and these are related to the suspension flux qs via

φu ≡ qu/qs. Moreover R and Py have been expressed as functions of φ and

tres instead of as functions of φ and φagg, recognising that φagg is itself a

function of tres (according to the theory presented in section 2.1). Aggregate

densification then impacts on thickener design via the strong sensitivity of

both R and Py to the level of aggregate densification or equivalently their
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strong sensitivity to tres.

Buscall and White theory (unlike Kynch theory) does not invariably fix qu

for a given qs via a local minimization of equation (2) since network stresses

may affect the solids settling rate. In fact, thickener control systems typically

select a specified underflow rheology (which correlates with a specific φu) so

that qu is then obtained for any given qs. Equation (11) can then be used to

generate a profile of φ vs vertical coordinate z recognizing that

dz/dtres = −qu/φ. (12)

The negative sign here reflects the convention that z is measured upwards,

whereas solids settle downwards.

Although equation (11) applies to a system undergoing aggregate densifi-

cation, the special case of either an undensified system or a system that has

already reached full densification is simple to obtain: one simply discards the

∂Py/∂tres term from the numerator on the right hand side of equation (11).

Such systems have been studied by Usher et al. (2009); Zhang et al. (2013b).

2.3. Converting to dimensionless form

In order to perform further analysis on thickener design, it is convenient to

cast the system in dimensionless form. The velocity scale uStokes,0 is defined

to be ∆ρ g/RStokes,0 (evaluating to 0.08277m s−1 for the parameter values

quoted in section 2.1) and fluxes qu, qs and qfs are made dimensionless on

the scale uStokes,0. Dimensionless fluxes are denoted by the symbols Qu, Qs
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and Qfs. Residence times tres are made dimensionless on the scale A−1 (the

reciprocal of the densification rate parameter) and distances z are made di-

mensionless on the scale uStokes,0/A. Interest here focuses on values either

A = 0.001 s−1 or A = 0.01 s−1. In the latter case, 1 unit of dimensionless

time corresponds to 100 s and 1 unit of dimensionless distance corresponds to

8.277 m. In the former case however, the unit of dimensionless distance and

time correspond to 1000 s and 82.77 m respectively. This does not imply that

thickeners must be designed to be anywhere near 82.77 m tall, since it can

happen that the predicted thickener height is found to be just a small frac-

tion of 1 dimensionless height unit. In what follows, the symbol Tres denotes

the dimensionless residence time and Z denotes the dimensionless distance

coordinate. It is a straightforward matter to re-express all the governing

equations from sections 2.1–2.2 in dimensionless form, although in the inter-

ests of brevity the resulting equations are not reproduced here. Implications

of using the non-dimensional equations are however discussed below.

Recall that in a thickener one typically has a hindered settling zone above

and a gelled suspension zone below. The dimensionless scales quoted above

collapse the data in the hindered settling zone together. Specifically if there

are two systems with different densification rate parameters A (corresponding

to different rates of raking the suspension), but with identical suspension

fluxes, and with the same overall amount of densification achieved in the

hindered zone, then the two systems pass through the exact same sequence

of φ and φagg states in the hindered settling zone (albeit, when converting
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back to dimensional variables, at different rates according to the value of A).

Dimensionless data corresponding to these two different A values does

not however continue to collapse once the gelled suspension bed is reached.

Indeed it is possible to define a dimensionless analogue of the densification

rate parameter

α =
a0A

∆ρ g uStokes,0

(13)

and, the state of the gelled suspension (in particular φ expressed in terms of

dimensionless Tres) becomes sensitive to α. For the parameter values quoted

in sections 2.1–2.2 it is found that3 α = 2.125× 10−6 (if A = 0.001 s−1) and

α = 2.125× 10−5 (if A = 0.01 s−1).

There is an alternative scaling that can be applied in the gelled sus-

pension bed. If one divides the dimensionless distance Z by α, this is

equivalent to making the distance z dimensionless on the scale a0/(∆ρ g)

instead of uStokes,0/A. Likewise if one divides the dimensionless time Tres

by α this is equivalent to making the time tres dimensionless on the scale

a0/(∆ρ g uStokes,0) instead of A−1. These new scales a0/(∆ρ g) for distance

and a0/(∆ρ g uStokes,0) for time (evaluating for the data considered here to

2.125×10−3 s and 1.758×10−4 m) are both independent of the densification

rate parameter A, making them particularly convenient for analysing how

3Although the dimensionless densification rate α values are much smaller than unity
here, this does not mean that densification rates are irrelevant to the thickening process.
Since Py and R are rapidly increasing functions of φ, it follows that a0 in equation (13) is
an underestimate of typical compressive stress in a finite solids fraction suspension, and
likewise uStokes,0 in equation (13) is an overestimate of the typical settling velocity.
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gelled bed heights and residence times in the gelled bed are sensitive to A

(or equivalently to α). It is not the case that residence times in the gelled

bed will be anywhere near as small as 2.125 × 10−3 s, nor will bed heights

be anywhere near as short as 1.758× 10−4 m, because the times and heights

that are computed during thickener design turn out to be many multiples of

these rescaled units.

In summary one set of dimensionless variables is convenient for collapsing

data in the hindered settling zone, whilst a distinct set of dimensionless

variables is more convenient for interpreting data in the gelled suspension

zone. Accordingly, both sets of variables will be considered (as appropriate)

in what follows.

3. Technique for matching hindered and consolidated zones

Sections 2.1 and 2.2 considered respectively how to model the hindered

settling zone and consolidated bed zones separately. The challenge now is

to match those two zones together. This is achieved below by comparing

the solids fraction at the bottom of the hindered zone and the solids fraction

at the top of the gelled suspension bed. Matching is in fact achieved by

constraining the first of these solids fractions to be less than the second.

It has been shown by Grassia et al. (2014) that the most convenient way

of describing the hindered zone is to parameterise in terms of the residence

time Tres that is spent traversing that zone (and using this to determine

the height of the hindered settling zone). This was found to be far more
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straightforward than trying to fix the height of the hindered zone a priori,

and then attempting to find the Tres value that produced that target height.

It turns out that parameterising in terms of residence time Tres that is spent

in the hindered zone, is actually also the most convenient way of matching the

hindered zone and gelled suspension zone together, so this parameterisation

is pursued further in what follows. As we shall see, in certain cases, the solids

fraction at the bottom of the hindered zone remains less than the suspension

gel point at the top of the bed, regardless of the value of Tres chosen. In other

cases however, to keep the first of these solids fractions less than the second,

an upper limit must be imposed on the time Tres that solids are allowed to

spend in the hindered zone. The criteria determining that Tres is unrestricted

in some cases and yet restricted in others are explained below.

For any given Tres and any given suspension flux Qs it is possible to

construct a solids flux curve Qu vs φ. Specifically (taking the dimensionless

analogue of equation (2))

Qu = Qsφ+Qfs, (14)

where Qfs is the batch settling or ‘free settling’ flux, a well defined function

of φ. The function Qfs (analogously to qfs) vanishes when φ → 0, and rises

to a maximum as φ grows, but then decays very rapidly back towards zero

as φ grows further still.

Typical Qu vs φ plots for a variety of Tres values are shown in Figure 3
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for the arbitrarily chosen value Qs = 0.0034. As can be seen in Figure 3, it is

generally possible to find a solids fraction φloc min that corresponds to a (local)

minimum of the Qu vs φ curve at any given Tres. Note that φloc min is sensitive

to the suspension flux Qs that is chosen. Had a Qs value smaller than 0.0034

been selected, the φloc min values obtained would have been larger: as is well

known in the literature (Usher and Scales, 2005), there is a trade off between

the flux through a thickener and the solids fractions attained.

The claim made above is that it is possible to match the hindered set-

tling and gelled suspension zones of the thickener together (accounting for

aggregate densification occuring in both zones) provided φloc min (the solids

fraction at the bottom of the hindered zone) is less than the suspension gel

point φg (which by definition is the solids fraction at the top of the gelled

bed). By contrast situations where φloc min exceeds φg lead to a contradiction:

under those circumstances one should not use the Kynch theory of Grassia

et al. (2014) to design for solids fractions up to φloc min in the hindered zone,

because material at φloc min should already be in the gelled zone (and so the

entire design should have employed the Buscall and White theory of Zhang

et al. (2013a)).

Determining whether φloc min is less or greater than φg depends partly on

the suspension flux Qs that is proposed: as was mentioned above, decreasing

Qs tends to increase φloc min, thereby making it more likely to exceed φg.

However determination of the relation between φloc min and φg is further

complicated by the fact that both φloc min and φg are both functions of Tres.
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Understanding the variation of φg with respect to Tres is straightforward.

As aggregate densification occurs and individual aggregates bind more tightly

together (increasing φagg) it has already been mentioned that the ratio be-

tween φg (the gel point) and φagg (the solids fraction in the aggregates) re-

mains fixed. However Figure 3 makes it clear that also φloc min increases with

Tres: in that figure, not only does the value of the local minimum increase

with increasing Tres (leading to increased solids fluxes Qu, an expected bene-

ficial outcome of aggregate densification) but also the φ value corresponding

to that local minimum shifts to the right with increasing Tres. The value of

Tres then potentially affects the relation between φloc min and φg.

Three separate situations are now identified, with a discussion of how

to design thickeners in each situation. In the first situation φloc min in the

fully densified state is less than φg in the fully densified state (and indeed

φloc min at any value of Tres is less than φg at that same Tres). In the second

situation φloc min in the fully densified state is greater than φg in the fully

densified state, whereas φloc min in the undensified state is less than φg in

the undensified state. In the third situation φloc min in the undensified state

exceeds φg in the undensified state (and in fact φloc min at any chosen Tres

values exceeds φg at that same Tres).

If φloc min < φg in the fully densified state, one is free to choose any

value of Tres, and having chosen that Tres, the hindered settling zone can be

computed according to the procedures of section 2.1, assuming the suspension

flux Qs is also given. At the bottom of the hindered zone, the solids fraction
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jumps from the ungelled φloc min to the gelled φg at the chosen Tres. The

gelled suspension zone can then be computed following the procedures of

section 2.2. Note that the solids flux Qu that is delivered and the underflow

solids flux φu (which is simply Qu/Qs) are actually fixed by the hindered

zone.

If the undensified φloc min < φg but the fully densified φloc min > φg,

there is then a critical residence time in the hindered zone at which φloc min

matches φg. The computations that must be performed are analogous to the

first situation described above, except that the Tres values are constrained:

specifically Tres must be chosen less than the critical residence time described

above, so that the jump to the gelled state cannot be delayed indefinitely. It

is still however the case that Qu and φu are fixed by the hindered zone.

If the undensified φloc min > φg, the suspension can be considered to gel

immediately, without the need to compute a hindered settling zone. Such

situations have already been considered at length by Zhang et al. (2013a)

and so are not studied any further here. The solids flux Qu through the

system is no longer set by the hindered settling zone, but instead (Zhang

et al., 2013a) can take any value in a range between zero and the value that

equation (14) would predict in the undensified state at the undensified gel

point: the higher the flux chosen, the taller the thickener.

In what follows a number of thickener design case studies are proposed

corresponding to the first two of the situations mentioned above, permitting

matching between the hindered settling zone and gelled suspension zone in

23



the presence of aggregate densification.

4. Case studies

In this section, eight cases are illustrated (summarised in Table 1). Sus-

pension material properties are all as given in section 2. Two distinct suspen-

sion fluxes are chosen: Qs = 0.0034 (the same value as is used as Figure 3,

and corresponding to Cases 1–4) and a smaller suspension flux Qs = 0.0015

(corresponding to Cases 5–8). Two distinct residence times (in the hindered

settling zone) are also chosen Tres = 0.05 (Cases 1–2 and 5–6) and Tres = 0.3

(Cases 3–4 and 7–8).

Odd and even numbered cases can be distinguished according to the densi-

fication rate parameter, odd numbered cases have A = 0.001 s−1 (equivalently

α = 2.125×10−6) whilst even numbered cases have A = 0.01 s−1 (equivalently

α = 2.125×10−5). Remember however that (owing to the dimensionless scal-

ings employed that collapse data together in the hindered settling zone) the

distinction between odd and even numbered cases will only become apparent

when consideration is given to the state of the gelled suspension bed.

In the systems of interest, it is the hindered settling zone (not the gelled

bed) that sets the solids fluxQu, and this flux can be determined immediately,

with values tabulated in Table 1. Moreover the underflow solids volume

fraction φu can also be obtained: it is just Qu/Qs. The data in Table 1 bear

out the expectation that smaller Qs values produce larger solids fractions φu.

Values of φloc min (the solids fraction at the bottom of the hindered settling
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zone, as opposed to that in the thickener underflow) are likewise shown in

Table 1 and exhibit similar trends, i.e. smaller Qs gives larger φloc min.

Table 1 compares φloc min values with gel points φg: recall that φloc min

must be less than φg in order to match the hindered and gelled zones together.

It is instructive to plot φloc min and φg as functions of Tres and this is done

in Figure 4a (for Qs = 0.0034) and in Figure 4b (for Qs = 0.0015). It is

apparent that if Qs = 0.0034, then φloc min < φg for all Tres, whereas if

Qs = 0.0015, then this only applies up to Tres ≈ 0.378. In all of Cases 1–8 at

least, the constraint that φloc min < φg is met. It is possible therefore to use

the techniques of Grassia et al. (2014) and Zhang et al. (2013a) to compute

profiles of solids fraction φ vs Z respectively in the hindered settling zone

and the gelled suspension zone, and compare the heights of and amounts of

time spent in each zone. This is achieved in the next section.

5. Results

This results section is arranged in three parts. Section 5.1 considers

profiles of solids fraction vs position in the hindered settling zone. Then sec-

tion 5.2 analyses profiles of solids fraction vs position in the gelled suspension

zone. Finally section 5.3 considers residence times and zone heights for both

the hindered settling and gelled suspension zones.

5.1. Solids fraction profiles in the hindered zone

Solids fraction profiles across the hindered settling region are plotted in

Figure 5. The convention adopted is to measure Z upwards, and to place
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Z = 0 at the top of the hindered settling region, so interest focusses upon

values Z ≤ 0 here. The solids fraction φ increases downwards through the

hindered settling zone as was also seen in Grassia et al. (2014).

Observing Figure 5, the main trend seen is that the size of the hindered

settling region is smaller with smaller residence time Tres (e.g. Cases 1–2 vs

Cases 3–4, Cases 5–6 vs Cases 7–8). Yet another trend is that cases with

higher φ values (through selecting a lower Qs) have a smaller hindered settling

region because the settling speed is slower (e.g. Cases 5–8 vs Cases 1–4).

5.2. Solids fraction profiles in the gelled suspension zone

Solids fraction profiles in the gelled suspension region are shown in Fig-

ure 6 and Figure 7. Here a shifted and rescaled dimensionless coordinate Z ′

is used, defined as Z ′ = (Z−Zh)/α where Zh denotes the vertical coordinate

(in the original scaling) at the bottom of the hindered settling zone. The top

of the gelled zone is now at Z ′ = 0.

The main observation is that even numbered cases (corresponding to

faster densification A = 0.01 s−1 or equivalently α = 2.125×10−5) give much

more compact gelled zones than odd numbered cases (slower densification

A = 0.001 s−1 or equivalently α = 2.125 × 10−6): this reflects the fact that

the densification weakens the weight bearing strength of the suspension and

thereby promotes gel collapse.

Another observation is that the systems in Figure 7 (smaller Qs and hence

higher φu) give substantially taller gelled zones than those in Figure 6 (larger
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Qs and hence lower φu). This reflects the very sharp increase in the weight

bearing strength of the suspension with increasing φ.

A similar trend is also seen by comparing sub-plot ‘b’ with sub-plot ‘a’

in each of these two figures. These compare states with different degrees

of densification upon entering the gelled suspension bed, i.e. different Tres,

but the densification level also affects Qu for any given Qs, and hence affects

φu ≡ Qu/Qs. Cases 3–4 in Figure 6 attain a higher underflow solids fraction

than their counterparts Cases 1–2 (as indeed Table 1 makes clear) and have

a correspondingly taller gelled suspension zone. The effect is however partly

offset by Cases 3–4 having a higher gel point than Cases 1–2 (again see

Table 1) meaning they also enter the gelled zone with a higher solids fraction.

Figure 6 and Figure 7 also (whereever possible) compare the gelled zone

φ vs Z ′ profiles incorporating aggregate densification with undensified and

fully densified counterparts. In order to perform a ‘like-for-like’ comparison

in the gelled suspension zone, the Qu and φu values for each of Cases 1–2,

3–4, 5–6 and 7–8 have been retained in the computations4. The qualification

‘whereever possible’ mentioned above is important: in fact, it is not always

possible to implement these like-for-like comparisons, as is explained below.

Comparing with an undensified system relies on the undensified gel point

φg being significantly greater than the φ value that gives the local minimum

4This ‘like-for-like’ comparison procedure is subtly different from what is presented in
Table 1 within which fluxes are set by the hindered settling zone, and so changing the
level of densification involves changing the values of Qu and φu.
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on the undensified flux curve. This ensures that, on a set of flux curves such

as Figure 3, the undensified flux evaluated at φg not only exceeds the local

minimum flux on the undensified curve, but is also at least as large as the

local minimum on the densified flux curve. Otherwise the undensified gelled

system cannot attain the target Qu that (to ensure a like-for-like comparison)

is set here by the densified ungelled system. It turns out that for the data

presented here it is only possible to do a like-for-like comparison with an

undensified system in Figure 6a. The result is as expected: the undensified

suspension, which possesses greater weight bearing strength than its densified

counterparts, leads to a taller gelled suspension bed.

A like-for-like comparison of the gelled suspension zone with a fully densi-

fied system requires that the target underflow solids fraction φu be at least as

large as the fully densified gel point. The comparison cannot be done in Fig-

ure 6 but is possible in Figure 7. As expected the fully densified gelled zone

is smaller than any analogous gelled zones that are only partially densified.

Particularly in Figure 7a, the gelled zone at full densification is very thin

indeed, primarily due to the fact that the fully densified φg is exceedingly

close to φu.

Figure 8 shows the combined solids fraction profile for the hindered set-

tling region and gelled bed region taken together. Cases 1–4 are plotted and,

so as to collapse data for odd and even numbered cases within the hindered

settling region, the plot is given in terms of φ vs Z (the same scaling as in

Figure 5). The figure makes it obvious that height is sometimes dominated
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by the hindered settling region (e.g. Case 3) but sometimes dominated by

the gelled bed region (e.g. Case 2). It turns out that Cases 5–8, although

not plotted here, tend to be dominated by the gelled bed region. The other

observation from the figure is that for Cases 1–4 there is a noticeable jump

in solids fraction between the bottom of the hindered settling region (solids

fraction φloc min) and the top of the gelled bed (solids fraction φg): the case

of interest in Figure 8 has the same suspension flux as in Figure 4a, and

φg invariably exceeds φloc min in Figure 4a. This jump from φloc min and φg

can in certain cases exceed the variation in solids fraction across either the

hindered settling region and/or the gelled bed. The size of the jump turns

out to be much smaller at the lower suspension flux in Cases 5–8 though (as

can also be noted in Table 1 and Figure 4b).

This concludes the discussion of solids fraction profiles. Section 5.3 below

considers instead more global height and residence time data.

5.3. Residence times and heights of the hindered and gelled suspension zones

Recall that Tres denotes the residence time in the hindered settling zone.

The symbol Tres,b is used to denote the residence time in the gelled suspension

bed underneath the hindered settling zone, and T total
res is defined as the sum

of Tres and Tres,b. Recall also that the origin of the Z coordinate system

is placed at the top of the hindered zone, and that the coordinate location

Z = Zh is at bottom of the hindered zone. Suppose further that the bottom

of the gelled suspension bed is at coordinate location Z = Zh +Zb. Both Zh
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and Zb are negative quantities by definition, the sign convention being that

Z is measured upwards. Moreover Ztotal is taken to be Zh+Zb. Table 2 gives

Tres, Tres,b, T
total
res , |Zh|, |Zb| and |Ztotal| for each of Cases 1–8.

In Cases 1–2, times Tres,b spent in the gelled suspension bed are at least

as long as times Tres spent in the hindered settling zone. Meanwhile in

Cases 3–4 the situation is reversed, times Tres in the hindered settling zone

(a parameter that is set) are at least as long as times Tres,b in the gelled

suspension bed (a value that is computed). Cases 5–8, which access much

higher solids fractions in the gelled suspension bed than any of Cases 1–

4, have residence times completely dominated by the gelled zone Tres,b, with

only a comparatively small contribution Tres from the hindered settling zone.

Similar considerations apply to the data for thickener heights. In Cases 5–

8 for instance, heights tend to be dominated by the gelled bed contribution

|Zb| with a small contribution from the hindered settling zone |Zh|, albeit the

dominance is not quite so strong as for residence times: this is a reflection

of the solids moving more slowly in the gelled suspension bed than in the

hindered settling zone. Cases 3–4 have somewhat taller hindered zones |Zh|

than gelled suspension beds |Zb|. Case 2 meanwhile has a somewhat taller

gelled suspension bed |Zb| than hindered settling zone |Zh|. Case 1 is an

exception: although slightly more time is spent in the gelled suspension bed

Tres,b than in the hindered settling zone Tres, the hindered settling zone is

slightly taller than the gelled suspension bed (|Zh| > |Zb|). Again this reflects

the higher settling speed in the hindered settling zone.
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One counterintuitive feature of Table 2 is that even numbered cases (cor-

responding to faster densification rates) appear to have taller gelled suspen-

sion beds |Zb| and longer residence times Tres,b than odd numbered cases

(slower densification). This is an artifact of scaling distances and times us-

ing scales that themselves involve the densification rate parameter. Recall

that in cases with densification rate A = 0.01 s−1 (even numbered cases), 1

unit of dimensionless time corresponds to 100 s and 1 unit of dimensionless

distance corresponds to 8.277 m, but these units of time and distance are

increased tenfold when A = 0.001 s−1 (odd numbered cases). Whilst such

scalings are useful for collapsing data in the hindered zone, in the gelled sus-

pension bed it is more intuitive (see section 2.3) to rescale the dimensionless

distances and times by dividing through by a factor α. In that situation, 1

unit of (rescaled) dimensionless time and of (rescaled) dimensionless distance

correspond respectively to 2.125×10−3 s and 1.758×10−4 m, applicable both

to odd and even numbered cases.

Such a rescaling is done in Table 3 with the distance scales in particular

now corresponding to those shown in Figure 6 and Figure 7. This rescaling

demonstrates as expected that odd numbered cases (slower densification) do

indeed give taller gelled suspension beds, and longer residence times within

those beds, than even numbered cases (faster densification).

Table 3 also includes whereever possible like-for-like comparisons with

undensified and fully densified systems. As expected undensified systems

(arbitrarily slow densification) give the tallest gelled beds and longest resi-
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dence times, whereas fully densified systems (arbitrarily rapid densification)

give the most compact gelled beds and shortest residence times.

6. Conclusions

A technique has been presented for analysing suspension behaviour in a

continuous thickener where the suspension undergoes aggregate densification

due to the action of rakes, thereby affecting the suspension rheology and

making it easier to dewater. The description of the aggregate densification

process is at present empirical: it involves a densification rate parameter

that is not itself predicted by the theory. Nonetheless once this parameter

is specified, thickener designs can be computed. The technique presented

allows matching a Kynch theory based approach (applicable to the hindered

settling zone higher up in the thickener) to a Buscall and White based ap-

proach (applicable to the gelled suspension zone lower down). The matching

technique assumes that the solids fraction at the bottom of the hindered set-

tling zone, which corresponds to a local minimum of a solids flux vs solids

fraction curve, is less than the suspension gel point. Under these circum-

stances it is the hindered settling zone (and not the gelled suspension zone)

that determines the solid flux through the suspension.

The model is most easily parameterised in terms of the residence time

spent in the hindered settling zone. Depending on the suspension flux that is

imposed, it can happen that the solids fraction at the bottom of the hindered

zone is invariably less than the suspension gel point, or it might be the case
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that the hindered zone solids fraction is predicted only to remain less than the

suspension gel point for a restricted range of hindered settling zone residence

times (in which case the transition to the gelled state must occur during that

restricted range of times). The smaller the suspension flux, the more likely

it is that the range of hindered settling zone residence times will become

restricted.

Once hindered settling zone residence times are specified, the model pre-

dicts the residence time in a gelled suspension zone beneath the hindered

settling zone. It also predicts the heights of each zone. Depending on the

parameters selected for the model it is possible to have more time and more

height in either the hindered settling zone or in the gelled suspension zone.

Smaller suspension fluxes tend to make the gelled suspension zone grow rel-

ative to the hindered settling zone.

Different rates of raking the suspension can lead to different rates of

densification. The effect of densification rate can be ‘scaled out’ of the hin-

dered settling zone (i.e. data at different densification rates can be collapsed

together by a suitable scaling selecting distance and time units that vary in-

versely with the densification rate), whereas for the gelled suspension, faster

densification leads to a more compact gelled suspension bed.
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Qs Tres Qu φu φloc min φg

unden 0.0034 N/A 0.000364 0.1071 0.0728 0.1
Cases 1–2 0.0034 0.05 0.000370 0.1088 0.0741 0.1014
Cases 3–4 0.0034 0.3 0.000397 0.1166 0.0798 0.1082
Full den 0.0034 N/A 0.000513 0.1509 0.1049 0.1372
unden 0.0015 N/A 0.000205 0.1367 0.0982 0.1

Cases 5–6 0.0015 0.05 0.000208 0.1390 0.0999 0.1014
Cases 7–8 0.0015 0.3 0.000222 0.1483 0.1078 0.1082
Full den 0.0015 N/A 0.000285 0.19 0.1420 0.1372

Table 1: Thickener operating parameters for Cases 1–8 in terms of dimensionless suspen-
sion flux Qs and dimensionless residence time in the hindered settling zone Tres (which
governs the extent of aggregate densification). Comparisons with undensified and fully
densified cases (for the same suspension flux Qs) are also shown. Solids flux Qu, underflow
solids fraction φu, the ‘local minimum’ solids fraction φloc min (that delivers the required
solids flux being a local minimum of the flux curve at time Tres) and gel point φg are de-
termined. Odd numbered cases correspond to aggregate densification rate A = 0.001 s−1

(equivalently in dimensionless form, α = 2.125× 10−6) whilst even numbered cases corre-
spond to A = 0.01 s−1, (equivalently α = 2.125× 10−5), but the effect of this parameter
is scaled out of the hindered settling zone, although it remains relevant in the gelled sus-
pension zone. In almost all cases shown the constraint φloc min < φg is satisfied, the only
exception being the fully densified case with Qs = 0.0015 (indicating that the suspension
could not attain full densification without gelling at this particular Qs value).
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Tres Tres,b T total
res

Case 1 0.05 0.0587 0.1087
Case 2 0.05 0.2044 0.2544
Case 3 0.3 0.0769 0.3769
Case 4 0.3 0.2802 0.5802
Case 5 0.05 0.8282 0.8782
Case 6 0.05 2.3423 2.3923
Case 7 0.3 1.0409 1.3409
Case 8 0.3 4.1924 4.4924

|Zh| |Zb| |Ztotal|
Case 1 0.000276 0.000207 0.000483
Case 2 0.000276 0.00072 0.000996
Case 3 0.00193 0.00028 0.00221
Case 4 0.00193 0.00099 0.00292
Case 5 0.000114 0.001476 0.00159
Case 6 0.000114 0.003946 0.00406
Case 7 0.000775 0.001855 0.00263
Case 8 0.000775 0.006975 0.00775

Table 2: For Cases 1–8, dimensionless solids residence times spent in the hindered settling
zone Tres (a parameter that is set), residence times in the gelled suspension region Tres,b

(a parameter that is computed), and also the sum of these, i.e. the total solids residence
times, T total

res . Also shown are heights required for the hindered settling zone |Zh|, gelled
suspension zone |Zb|, and total thickener heights |Ztotal| ≡ |Zh| + |Zb|. Recall that the
(dimensionless) suspension flux, Qs equals 0.0034 for Cases 1–4 and 0.0015 for Cases 5–8.
Recall also that the (dimensional) densification rate parameters are A = 0.001 s−1 for odd
numbered cases and A = 0.01 s−1 for even numbered cases; equivalently α = 2.125× 10−6

for odd numbered cases, and α = 2.125× 10−5 for even numbered cases.
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Qu φu |Zb/α| Tres,b/α
Unden 0.000370 0.1088 153.5 43009
Case 1 0.000370 0.1088 97.4 27623.5
Case 2 0.000370 0.1088 33.9 9618.8
Full den N/A N/A N/A N/A

Unden N/A N/A N/A N/A
Case 3 0.000397 0.1166 131.8 36188.2
Case 4 0.000397 0.1166 46.6 13185.9
Full den N/A N/A N/A N/A

Unden N/A N/A N/A N/A
Case 5 0.000208 0.1390 694.6 389741
Case 6 0.000208 0.1390 185.7 110226
Full den 0.000208 0.1390 37.7 25025

Unden N/A N/A N/A N/A
Case 7 0.000222 0.1483 872.9 489835
Case 8 0.000222 0.1483 328.2 197289
Full den 0.000222 0.1483 233.5 149676

Table 3: Rescaled gelled suspension bed heights |Zb/α| and rescaled solids residence times
Tres,b/α spent in the consolidation region for Cases 1–8. Odd numbered cases have smaller
α than even numbered ones (α = 2.125× 10−6 vs α = 2.125× 10−5), i.e. they correspond
to slower aggregate densification. Cases are compared (whereever possible) with an un-
densified system and a fully densified system operated at the same solids flux Qu and the
same underflow solids fraction φu. In many cases, the undensified data are omitted, as
the undensified system cannot simultaneously deliver the target underflow solids flux and
target underflow solids volume fraction. In certain of the fully densified cases, data are
again omitted, because no gelled suspension bed is required for a fully densified system at
the underflow solids volume fraction in question.
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Figure 1: Dimensionless hindered settling function Rs (defined as Rs ≡ R/RStokes,0)
vs solids fraction φ for the undensified state (Tres = 0) and also for the fully densified
state (Tres → ∞). Values of Rs vs φ corresponding to intermediate levels of aggregate
densification would lie between the two curves shown. Note that for solids fractions φ in
excess of φagg, the undensified hindered settling function is recovered, since aggregates
then fill space and are interlinked and interpenetrating, and so are no longer discrete
entities. Such large φ values are however beyond the range of solids fractions of interest
in the present work.
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Figure 2: Dimensionless compressive yield stress py (defined as py ≡ Py/a0) vs solids
fraction φ for the undensified state (Tres = 0) and for the fully densified state (Tres → ∞).
Values of py vs φ corresponding to intermediate levels of aggregate densification would lie
between the two curves shown. For solids fractions φ in excess of φagg, the undensified
hindered settling function is recovered (Channell et al., 2000), although that is beyond the
range of solids fractions of interest in the present work.
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Figure 3: Dimensionless solids flux Qu ≡ Qsφ +Qfs vs solids fraction φ in the hindered
settling zone of the suspension for a suspension flux Qs = 0.0034 and various residence
times Tres (corresponding to various different levels of aggregate densification achieved
in the hindered zone). Interest focusses on the local minimum for each curve. Increas-
ing the value of Tres not only increases the value of the local minimum (indicated by
horizontal dashed lines), but also increases the solids fraction φ corresponding to the min-
imum (dashed vertical lines). The aggregate diameter ratio Dagg that governs the level of
densification varies from unity at Tres = 0 to 0.9 as Tres → ∞.
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Figure 4: The solids fraction φloc min (corresponding to the local minimum of the Qu vs
φ curve, equation (14)) and the gel point φg both plotted vs residence time Tres in the
hindered settling zone. In the sub-plot labelled ‘a’, the suspension flux is Qs = 0.0034 and
φloc min < φg at all times. In the sub-plot labelled ‘b’, the suspension flux is Qs = 0.0015
and the curves intersect at Tres ≈ 0.378. Matching the hindered settling zone to the gelled
suspension bed is only possible for times up to that intersection point, so (for sub-plot ‘b’)
the suspension needs to have gelled by that time.
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Figure 5: Profiles of the solids volume fractions φ vs dimensionless position Z in the
hindered settling region. Note that there is no difference between adjacent odd and even
numbered cases, since they only differ in their value of the densification rate parameter,
A, but the effect of this parameter has been scaled out of the hindered settling region.
The sub-plots labelled ‘a’ and ‘b’ are plotted using suspension fluxes Qs = 0.0034 and
Qs = 0.0015 respectively. Recall that Tres (the dimensionless residence time that governs
the extent of aggregate densification at the bottom of the hindered settling zone) equals
0.05 for Cases 1–2 and Cases 5–6, and equals 0.3 for Cases 3–4 and Cases 7–8.
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Figure 6: Solids volume fraction profiles determined in the gelled suspension zone in
rescaled coordinates φ vs Z ′, and the comparison with the undensified case (where appli-
cable). No comparison is given with the fully densified case (because, for the parameter
values given, the fully densified case does not gel at the underflow solids volume fraction
in question). Recall that the suspension flux is Qs = 0.0034 in all these cases.
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Figure 7: Solids volume fraction profiles determined in the gelled suspension region in
rescaled coordinates φ vs Z ′ and comparisons with fully densified cases. No comparison is
given with the undensified case, since the undensified case cannot simultaneously attain
the same underflow solids flux and the same underflow solids volume fraction as these
densified ones. Recall that the specified suspension flux is Qs = 0.0015 in these cases.
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Figure 8: Solids volume fraction profiles φ vs dimensionless position Z in both the hindered
settling region above and in the gelled suspension region below with a jump in solids
fraction between the two regions. Cases 1–2 are shown in sub-plot ‘a’, cases 3–4 are shown
in sub-plot ‘b’, and all of these have suspension flux Qs = 0.0034.
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