Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Positive inductive-recursive definitions

Ghani, Neil and Malatesta, Lorenzo and Nordvall Forsberg, Fredrik (2013) Positive inductive-recursive definitions. In: Algebra and Coalgebra in Computer Science. Lecture Notes in Computer Science . Springer Berlin/Heidelberg, Berlin, pp. 19-33. ISBN 9783642402050

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We introduce a new theory of data types which allows for the definition of data types as initial algebras of certain functors Fam ℂ → Fam ℂ. This theory, which we call positive inductive-recursive definitions, is a generalisation of Dybjer and Setzer’s theory of inductive-recursive definitions within which ℂ had to be discrete – our work can therefore be seen as lifting this restriction. This is a substantial endeavour as we need to not only introduce a type of codes for such data types (as in Dybjer and Setzer’s work), but also a type of morphisms between such codes (which was not needed in Dybjer and Setzer’s development). We show how these codes are interpreted as functors on Famℂ and how these morphisms of codes are interpreted as natural transformations between such functors. We then give an application of positive inductive-recursive definitions to the theory of nested data types. Finally we justify the existence of positive inductive-recursive definitions by adapting Dybjer and Setzer’s set-theoretic model to our setting.