Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Fuzzy policy reinforcement learning in cooperative multi-robot systems

Gu, Dongbing and Yang, Erfu (2007) Fuzzy policy reinforcement learning in cooperative multi-robot systems. Journal of Intelligent and Robotic Systems, 48 (1). pp. 7-22. ISSN 0921-0296

Full text not available in this repository.Request a copy from the Strathclyde author


A multi-agent reinforcement learning algorithm with fuzzy policy is addressed in this paper. This algorithm is used to deal with some control problems in cooperative multi-robot systems. Specifically, a leader-follower robotic system and a flocking system are investigated. In the leader-follower robotic system, the leader robot tries to track a desired trajectory, while the follower robot tries to follow the reader to keep a formation. Two different fuzzy policies are developed for the leader and follower, respectively. In the flocking system, multiple robots adopt the same fuzzy policy to flock. Initial fuzzy policies are manually crafted for these cooperative behaviors. The proposed learning algorithm finely tunes the parameters of the fuzzy policies through the policy gradient approach to improve control performance. Our simulation results demonstrate that the control performance can be improved after the learning.