Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Simulation study of magnetic holes at the Earth's collisionless bow shock

Eliasson, B and Shukla, P K (2007) Simulation study of magnetic holes at the Earth's collisionless bow shock. New Journal of Physics, 9 (6). ISSN 1367-2630

[img]
Preview
Text (Eliasson-Shukla-NJP-2007-Simulation-study-of-magnetic-holes-at-the-Earths-collisionless-bow-shock)
Eliasson_Shukla_NJP_2007_Simulation_study_of_magnetic_holes_at_the_Earths_collisionless_bow_shock.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (929kB)| Preview

    Abstract

    Recent observations by the Cluster and Double Star spacecraft at the Earth's bow shock have revealed localized magnetic field and density holes in the solar wind plasma. These structures are characterized by a local depletion of the magnetic field and the plasma density, and by a strong increase of the plasma temperature inside the magnetic and density cavities. Our objective here is to report results of a hybrid-Vlasov simulations of ion-Larmor-radius sized plasma density cavities with parameters that are representative of the high-beta solar wind plasma at the Earth's bow shock. We observe the asymmetric self-steepening and shock-formation of the cavity, and a strong localized temperature increase (by a factor of 5โ€“7) of the plasma due to reflections and shock surfing of the ions against the collisionless shock. Temperature maxima are correlated with density minima, in agreement with Cluster observations. For oblique incidence of the solar wind, we observe efficient acceleration of ions along the magnetic field lines by the shock drift acceleration process.