Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Positive inductive-recursive definitions

Ghani, Neil and Nordvall Forsberg, Fredrik and Malatesta, Lorenzo (2015) Positive inductive-recursive definitions. Logical Methods in Computer Science, 11 (1). ISSN 1860-5974

[img]
Preview
Text (Ghani-etal-LMCS-2015-Positive-inductive-recursive-definitions)
Ghani_etal_LMCS_2015_Positive_inductive_recursive_definitions.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (242kB) | Preview

Abstract

A new theory of data types which allows for the definition of types as initial algebras of certain functors Fam(C) -> Fam(C) is presented. This theory, which we call positive inductive-recursive definitions, is a generalisation of Dybjer and Setzer's theory of inductive-recursive definitions within which C had to be discrete -- our work can therefore be seen as lifting this restriction. This is a substantial endeavour as we need to not only introduce a type of codes for such data types (as in Dybjer and Setzer's work), but also a type of morphisms between such codes (which was not needed in Dybjer and Setzer's development). We show how these codes are interpreted as functors on Fam(C) and how these morphisms of codes are interpreted as natural transformations between such functors. We then give an application of positive inductive-recursive definitions to the theory of nested data types and we give concrete examples of recursive functions defined on universes by using their elimination principle. Finally we justify the existence of positive inductive-recursive definitions by adapting Dybjer and Setzer's set-theoretic model to our setting.