Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Plasma physics : surfing the wake

Bingham, Robert (1998) Plasma physics : surfing the wake. Nature, 394. pp. 617-619. ISSN 0028-0836

Full text not available in this repository. Request a copy from the Strathclyde author


For almost 60 years, physicists have used strong, large-scale electric fields to accelerate charged subatomic particles. Unfortunately, these conventional particle accelerators, RF linacs, have reached a limit: at an electric field strength of about 107 V m-1, the support structures break down — sparks fly, short-circuiting the accelerator. So, in order to reach higher particle energies one is forced to build ever larger linear accelerators, or bend the particles into a circular path using magnets (which produces another problem, as the particles then radiate away much of their energy). In theory, this electric-field problem can be overcome by plasma particle accelerators, because plasma, as an ionized medium, has already broken down and is therefore not susceptible to electron dissociation. Plasma waves can generate accelerating electric fields thousands of times greater than the most powerful conventional accelerators. And in Physical Review Letters , Amiranoff and colleagues now report1 an experiment that brings the 'table-top' plasma accelerator a step closer to reality.