Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Tomographic imaging based measurement of three-dimensional geometric parameters of a burner flame

Hossain, Md. Moinul and Lu, Gang and Yan, Yong (2014) Tomographic imaging based measurement of three-dimensional geometric parameters of a burner flame. In: 2014 IEEE Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. IEEE, Piscataway, NJ., pp. 1111-1114. ISBN 9781467363853

Full text not available in this repository. Request a copy from the Strathclyde author


This paper presents the measurement of 3-D (three-dimensional) flame geometric parameters based on optical fiber imaging and tomographic techniques. Two identical CCD (Charge-coupled Device) cameras coupled with eight imaging fiber bundles are used to capture the 2-D (two-dimensional) images of a burner flame concurrently from eight different directions around the burner. An optical tomographic algorithm LFBP-SART is utilized to reconstruct the cross-sections and generate a complete 3-D model of the flame. A set of geometric parameters, including length, volume, surface area and circularity, are then determined from the model generated and used for characterizing the flame. The proposed technical approach is firstly evaluated using an LED (light emitting diode) tube with known dimensions, and then on a gas-fired combustion rig. The results obtained demonstrate that the proposed algorithms are effective for measuring the 3-D geometric parameters of a burner flame over a range of combustion conditions.