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ABSTRACT

A novel architecture and system for the provision of Reliability Centred Maintenance (RCM) for offshore wind power gen-
eration is presented. The architecture was developed by conducting a bottom-up analysis of the data required to support
RCM within this specific industry, combined with a top-down analysis of the required maintenance functionality. The ar-
chitecture and system consists of three integrated modules for intelligent condition monitoring, reliability and maintenance
modelling, and maintenance scheduling that provide a scalable solution for performing dynamic, efficient and cost-effective
preventative maintenance management within this extremely demanding renewable energy generation sector. The system
demonstrates for the first time the integration of state-of-the-art advanced mathematical techniques: Random Forests, dy-
namic Bayesian networks and memetic algorithms in the development of an intelligent autonomous solution. The results
from the application of the intelligent integrated system illustrated the automated detection of faults within a wind farm
consisting of over 100 turbines, the modelling and updating of the turbines’ survivability and creation of a hierarchy of
maintenance actions, and the optimizing of the maintenance schedule with a view to maximizing the availability and rev-
enue generation of the turbines. © 2015 The Authors. Wind Energy published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The wind power industry has grown considerably over the past 15 years, and with an expected installed capacity of 230GW
by 2020 and 400GW by 2030, it is gearing up to become the main power technology in the EU.1 To meet emission targets,
the UK wind industry is planning very large offshore wind farms, some at considerable distance from shore and in deeper
water, which pose challenges from the viewpoints of installation and maintenance.2 As the number of wind turbines in-
creases, the resources needed to keep these assets in optimal operating condition also increases. These resources include
the infrastructure used to monitor the performance and health of the assets, the technology needed to analyse the data gen-
erated by the sensors to inform maintenance related decisions and the equipment needed to perform maintenance.

For an offshore wind farm, a failure can cause a significant downtime given the difficulties in accessing sites due to weather,
sea state and availability of equipment, for example. In addition, a relatively large period of wind turbine downtime is required
to conduct repairs, resulting in further loss of revenue.1 Costs of operation and maintenance (O&M) actions in this case can be
up to 25–30% of the cost of the energy2 and typically estimated at five to 10 times of cost of onshoremaintenance,3 and to this, a
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major loss on the energy generating revenues must be added. For this reason, it is of paramount importance to prevent the failure
of wind turbines and reduce unavailability. While traditional maintenance scheduling (MS) is often ‘corrective’, we recognize
that offshore maintenance must be ‘preventative’where possible, and that in order to achieve this, the solution must have direct
online access to the necessary information with which it can optimize decisions relating to maintenance tasks.

1.1. Proposed modular architecture

This paper presents a novel architecture and system to support Reliability Centred Maintenance (RCM). The aim of the pa-
per is to illustrate the integration of different mathematical methods within the development of a systemic solution to RCM,
which is subsequently implemented within an offshore wind power generation context. Within the solution presented, de-
cision making is informed by observations from the sensors installed on the turbines; condition monitoring provides the
orientation of the data in the form of identifying anomalous behaviour; reliability and maintenance modelling (RMM) sup-
ports decision making by proposing different maintenance options, and finally MS generates a near-optimal decision with
respect to the overall maintenance cost effectiveness of the wind farm. Figure 1 provides an illustration of how associated
modules may be integrated from an information flow perspective to create the solution and consists of six high-level steps.
The three modules of the solution are as follows:

• Intelligent condition monitoring (ICM): This module uses methods to analyse data from wind turbine supervisory control
and data acquisition (SCADA) units and deployed sensors that measure features such as mechanical vibration4 to
determine the state of components within the turbine and monitor deviations from normal behaviour (step 1 in Figure 1).
If any such deviation/anomaly is found, the system identifies this state and informs the Reliability and Maintenance
Modelling module (step 2).

• RMM: This module models a component’s probability of survival across the duration of its intended service life. This
module uses statistical analysis and input from the ICMmodule to adapt a generic lifetime model to the observed state of
the component (step 3) and determine the best maintenance action for turbine survival, which resolves the fault (step 4).

• MS: This module uses the RMM lifetime estimations to produce a context-enhanced maintenance schedule (step 5).
The overall goal is still to minimize cost and downtime, but by being able to better predict the state of a component,
overall costs can be reduced through predictive maintenance. The implemented maintenance action will subsequently
impact the turbine survivability within the RMM (step 6).

As illustration of the interaction of these modules, if a turbine is known to experience high wind shear, it is likely that the
gearbox will be under higher stress, leading to a shorter service life. This can manifest itself in the ICM module detecting
anomalous behaviour, which in turn informs the RMM module of additional wear on the component, which finally informs
the MS module of the component’s deteriorated state. If the deterioration is significant, the scheduler will determine that the
component requires more than standard scheduled maintenance, resulting in the requirement of additional equipment for a
more significant maintenance operation to be made available to the maintenance team. This maintenance intervention po-
tentially extends the lifetime of the component by a greater amount than standard scheduled maintenance.

The maintenance problem is compounded by most large-scale wind farm arrays potentially having a range of wind tur-
bine types, variants and entry into service dates, as well as the individual turbine wear being influenced by the 3D nature of

Figure 1. Proposed high-level information flow.
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the inflow conditions: topography, wind shear and atmospheric stability assumptions. As such, each individual turbine on
the wind farm requires individual treatment.

In order to consider the appropriateness of available approaches as potential candidates for an integrated solution, a more
detailed understanding of the types and availability of information required for an integrated solution was developed.
Figure 2 illustrates in more detail the type and flow of information required to enable intelligent integrated RCM. The data
sources are distinguished as either ‘online’ or ‘offline’. The former indicates that the data are generated or computed at
runtime by the system and will be passed between modules. The latter refers to anything that has been taken from an ex-
ternal data source, which includes information derived from expert knowledge, existing/fixed maintenance regimes and
known safety limits.

The ICM module uses existing fault detection practices and component dependencies, to integrate with online turbine
sensor SCADA data (including frequency, standard deviation and latency of the observations). The ICM module subse-
quently provides a diagnosis of each turbine state, identifies whether a component is failing and determines the overall sys-
tem state.

The RMM module uses offline information relating to the mean time to failure (MTTF) for the turbine components as
well as system diagrams illustrating the component dependencies and integrates this with the diagnosis output from the
ICM module. SCADA data are also used within the RMM module to estimate the survivability (predicted repair state)
for each turbine and subsequently generate a hierarchy of maintenance actions. In addition, the failure rate data for the com-
ponents within the turbine are enhanced by incorporating these new observations to improve the accuracy of the MTTF.

The MS module uses information relating to existing scheduled maintenance for the turbines as well as constraints with
respect to the availability of maintenance equipment and integrates this with the maintenance action hierarchy from the
RMM module. Optimized maintenance schedules are created for each of the potential maintenance actions (integrated with
other scheduled actions) with a view to optimizing the turbines’ availability. The RMM module is notified if a maintenance
action cannot be scheduled, e.g. a generator replacement requiring lifting equipment, which is unavailable or unsafe to use
given current meteo-oceanic conditions. In addition, the MS module notifies the RMM module of all scheduled mainte-
nance actions in order that the survivability of each maintained turbine can be updated.

Figure 2. Input and output information flow.
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1.2. Technology review

While ICM is a relatively new concept in the wind industry, it has been deployed with success in many related fields.
Catterson et al. use a Gaussian mixture model (GMM) derived from transformer sensor data, in order to detect anomalous
states within the plant,5 while Yu applies an adaptive version of a GMM to the problem of machine-tool degradation.6

Here, the use of ICM is in detecting anomalous readings with respect to other correlated variables, for which a hand-
coded model would be intractable. Among the most commonly deployed ICM techniques has been artificial neural net-
works (ANNs), which can be used for detecting both anomalous sensor readings and diagnosing these as specific
faults.7,8 Using only SCADA data, Zaher et al. successfully applied ANNs to detect anomalous temperature readings
within a turbine’s gearbox and cooling oil,9 while Kusiak and Li also applied ANNs for diagnosing the severity of a
fault.10

Yan demonstrated that the use of Random Forests (RF)11 for classifying faults outperformed conventional decision tree
classifiers and support vector machines, as well as producing comparable performance to ANNs.12 Kusiak and Verma com-
pared a range of different data mining algorithms to the prediction of faults within wind turbines.13 The magnitude of the
fault detection challenges within wind turbines was highlighted by Kusiak and Verma with 16 normal operating states, and
one fault state, which could in turn have over 400 different reasons for the fault. SCADA data were used to train the algo-
rithms, which consisted of over 100 parameters for 17 turbines, with two-thirds of the available data used for training.
Using the geometric mean of the fault class as the algorithm performance metric, Kusiak and Verma established that the
RF algorithm provided the most accurate results with an accuracy of 78–98%.

Complex system components exhibit dynamic behaviour, where not only the combination of failing components re-
flects the state of the system but also the sequence in which these components fail.14 While conventional techniques such
as fault trees fail to capture this dynamic behaviour, Bayesian belief networks (BBNs) support reasoning under uncer-
tainty and constitute a flexible and powerful probabilistic modelling framework that makes them suitable for applications
in the field of reliability and maintenance.15,16 Recently, influence diagrams and BBNs have been used for modelling the
reliability of civil structures. Models have been used to optimize the acquisition of condition data of structures17 and op-
timize the maintenance of individual structures.18 Typically, BBNs are static models that represent the joint probability
distribution at a fixed point or interval of time. To account for temporal dependencies, an explicit representation of time
in a BBN is needed. Dynamic Bayesian networks (DBNs), such as those described in the work of Straub and
Kiureghian,18 extend BBNs to allow for reasoning in a dynamic world where changes occur over time. To date, these
models have successfully captured the reliability of individual turbines. The research presented here expands on previous
models by considering the impact of environmental characteristics gathered in real time and the challenges of accessing
remote assets.

Maintenance scheduling problems can be generally classified as optimization problems where the aim is to find the op-
timal schedule(s) to satisfy the designed objective(s). Genetic algorithms (GAs) can be considered a suitable model owing
to their ability to perform global optimization and intelligent parallel searching in non-linear solution space.19 To achieve
optimal solutions, several strategies have been developed using a combination of GAs, Monte Carlo (MC) simulation, and
simulated annealing (SA), for example. Dahal et al.20 used a GA with a fuzzy evaluation function for generator MS. Later,
the same author extended the study with GA/SA and GA/SA/heuristic hybrid approaches; the results of the investigation
demonstrated that the GA/SA/heuristic hybrid approaches resulted with slightly better results than the GA/SA approach,
while both approaches were better than the results generated from a simple GA.

Garcia et al. presented an integrated intelligent solution for predictive maintenance of a wind turbine gearbox.21 The
SIMAP tool incorporated an ANN to detect anomalous behaviour within the gearbox as well as for health condition, a
fuzzy expert system to establish the failure mode relating to the anomalous behaviour and a fuzzy GA to schedule the
associated maintenance action. While the authors suggest that the tool may be applied to more complex components, as
well as to more than one turbine, the approach was demonstrated for a single gearbox. The research undoubtedly lays
the foundation for demonstrating the concept of intelligent integrated maintenance; however, one of the main challenges
lies in the use of a fuzzy expert system for the diagnosis of the anomaly. The rules incorporated within the SIMAP
fuzzy expert system are defined a priori, despite such a pre-defined approach not being able to detect previously un-
known errors or patterns as is prevalent within this problem domain. In this paper, we develop an automated and intel-
ligent approach to identify failure patterns or modes that does not require expert input and can be applied to numerous
systems.

The framework developed in this paper is in contrast to the current suite of O&M models available,22,23 which focus on
long-term planning of an offshore wind farm and strategic decisions relating to utilizing vessels, while the framework de-
veloped here addresses short-term decisions such as MS. This proposed modular structure for the solution provides a focus
for the development of each of the modules (Sections 2) and the integration of the modules (Section 5). The modules are
discussed within the context of gearbox anomalies; however, the modules are applicable for all wind turbine components. A
case study is described within Section 6, which demonstrates the implementation of the integrated solution using over 100
turbines that included seven turbines that were known to possess anomalous behaviour.
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2. INTELLIGENT CONDITION MONITORING MODULE

Like the system as a whole, the ICM module is designed to support generic turbine data in order that deployment time is
minimal and that target turbine models are largely irrelevant. To achieve this, machine learning (ML) models form the core
of the module, with both supervised and unsupervised paradigms supported. Such automated processing is a key require-
ment of continuous large-scale fleet monitoring where human observation is not cost feasible. Figure 3 illustrates the flow
and processing of information within the ICM module.

It is rarely the case that operators will use a single manufacturer/model of turbine within their fleets, preferring instead to
select these on a site-by-site basis. This leads to a mixture of assets throughout the fleet, making it intractable to design be-
spoke monitoring systems. However, most modern turbines are equipped with common sensors and logging abilities, gen-
erating data that can be interpreted by ML models.

Specifically, only SCADA and alarm data are required for fault detection and diagnosis models to be constructed.
SCADA data refer to the industry standard of sensor readings, such as generator Revolutions Per Minute (RPM) yaw po-
sitions and wind speeds, which each have their mean, minimum, maximum and standard deviation recorded and averaged
over a 10min period.

It is assumed that the turbine will have an automated alarm system. Alarms are generated by a combination of the internal
CM system and turbine controller and indicate warnings such as generator over-speed, low oil pressure and blade vibrations.
For modern turbines, a typical internal CM system will have several thousand possible alarms. If available, we can also
incorporate into the modelling data on safety limits, e.g. shutdown speeds, and data on current fault detection procedures.

Condition monitoring can largely be classed into three categories: detection, diagnosis and prognosis of faults. Of these,
only detection and diagnosis are currently supported and are represented as an ML classification problem. Here, fault de-
tection is simply detecting whether the turbine is in an anomalous state, where this means anything that is not the normal,
intended behaviour. Fault diagnosis takes this further by determining the type of state the turbine is in (e.g. active fault). In
both cases, this is implemented using an RF.11

All training of ML models is currently performed offline. The model training system is provided with a historical
SCADA dataset and associated alarm set for the same turbine, which then automatically derives the trained model. It is
at this point that the input SCADA data must be annotated with a class indicating whether it is normal or anomalous.
For detection, this is achieved by assuming that any data sample that has an alarm active at the associated time is anoma-
lous, while if no alarm is active, it is normal. Classification is used in preference to anomaly detection methods as the ratio
of samples during which an alarm is active is suitably high enough for classification to be valid. For fault diagnosis, the
alarm code itself is used as the label, e.g. alarm code 10512 indicates a high temperature in the main bearing. Irrelevant
alarms that may be active but do not indicate an anomalous turbine state are filtered, e.g. communication with the central
database being offline. Additionally, if maintenance records are available for the turbine and time period considered (as
used by the RMM module), any data samples associated during the work period are removed, as there is no way to know
if the turbine is in a normal operating state.

In both of these cases, an RF is trained on historical SCADA data for each turbine, which is labelled as previously de-
scribed. Of these data, 80% are used to train the RF with the remaining 20% used to evaluate the trained model. Each
turbine-specific model is evaluated on approximately 5000 SCADA samples. Table I shows that the RF provides high ac-
curacy in fault detection, with an overall accuracy of 98.83%. This percentage is calculated as the number of true positives
(correctly classifying the turbine as being in a good state), plus the number of true negatives (correctly classifying the tur-
bine as being in an anomalous state), divided by the total number of samples.

Figure 3. ICM module data and process flow.
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The fault detection and diagnosis models offer high accuracy when trained on historical datasets, with detection being
slightly higher. The reason for this discrepancy is that classes for fault diagnosis are based upon alarm codes, rather than
the simple binary normal/anomalous behaviour of fault detection. Given that certain alarm codes will only appear once
or twice in the training data, it is unlikely the model will be able to accurately classify any future data of this type without
seeing many more samples during training. Similarly, a data-driven model cannot classify unknown alarms/faults.

The ICM module continuously monitors all turbines in real time. Regardless of whether a fault is encountered or not, the
system notifies the RMM module of the turbine number and state. However, the ICM system is designed to detect anom-
alies in the turbine, including those that are transient, i.e. faults that only last for a single 10min sample, such as an over-
speed caused by high wind.

These can often be false positives, caused by erroneous sensor readings that do not truly represent the state of the system.
Alternatively, these may be genuinely anomalous readings, which, while of interest to the ICM system, have negligent im-
pact on the life of the turbine. As such, we choose to filter these anomalous classifications prior to them being transmitted to
the RMM module. The accuracy of a fault detection model is determined by its overall accuracy, λ, the true positive rate
(TPR) and true negative rate (TNR) as defined in equations (1)–(3). Here, TP refers to the true positives output by the clas-
sifier and the corresponding abbreviations refer to the true negative, false positive and false negative rate. In this case, a true
positive is a correctly classified ‘normal’ SCADA sample, while a true negative is a correctly classified anomalous sample.

TPR ¼ TP

TPþ FN
(1)

TNR ¼ TN

TN þ FP
(2)

λ ¼ TPþ TN

TPþ FPþ TN þ FN
(3)

The overall accuracy, λ, is used as an indicator of how strongly evidence should be weighted towards the current obser-
vation versus prior knowledge,24 as shown in equations (4), (5), where SA is an anomalous turbine state, SN is a normal
turbine state and Cconf is the confidence the classifier, C, has in the label produced for the respective SCADA sample. This
is used to prevent poor classifiers continually providing false negatives/positives to the RMM module.

P CjSAð Þ ¼ λ TNR�Cconf

� �þ 1� λ
Sj j (4)

P CjSNð Þ ¼ λ TPR�Cconf

� �þ 1� λ
Sj j (5)

These values are used to derive a probability of the classification being true, given the classifier’s overall and individual
accuracy on normal and anomalous data, using a simple Bayesian update. Unless the posterior probability of a fault occur-
ring (S= SA) exceeds a user-defined threshold, the RMM module will not be notified of a fault. Regardless of the filtered
result, the RMM module uses the ICM output as an indicator of turbine state, in order to derive the remaining life of the
asset.

3. RELIABILITY AND MAINTENANCE MODELLING MODULE

The output from the ICM provides an assessment of the current state of the system. However, it does not provide information
on the future evolution of the system, particularly in relation to its current age. The purpose of the RMMmodule was to model
the natural degradation of the system and to incorporate the output of the ICM into this calculation. A DBN was chosen as it
met four key criteria. First, it has a strong theoretical foundation. Second, it is capable of capturing the dynamic nature of
degradation over time and into the future. Third, it is capable of updating the reliability of the system based on the output
of the ICM. Finally, it is capable of estimating the resulting state of the system under different types of maintenance actions.

Table I. Confusion matrix of the ICM module with regard to fault detection.

Working (predicted) (%) Failed (predicted) (%)

Working (actual) 99.7 0.30
Failed (actual) 9.3 90.7
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Two workshops with maintenance engineers and senior management were conducted to qualitatively construct the
model. The aims of these workshops were to understand degradation of a gearbox of an offshore wind turbine and identify
factors influencing the deterioration of the system. The first workshop focused on understanding how gearboxes aged, the
most appropriate metric for measuring the age of a turbine and the variables that influenced the rate of degradation. The
second workshop focused on identifying data sources to quantify the model, and where necessary, for the experts to specify
their subjective belief about the dependencies.

During the first workshop, engineers stated that calendar time was an inadequate measurement of the age of a turbine.
The number of rotations, used as a proxy for use, was proposed but rejected by experts. They believed that turbulence in-
tensity, defined as the ratio of the wind speed standard deviation and the mean wind speed determined from the same set of
measured data samples of wind speed, and taken over a specified period of time was a key contributor to degradation.

From this, a new metric, the effective rotations of the generator (ERG) was defined. The ERG was dependent on the gen-
erator RPM, i.e. the number of rotations per time unit, which measures the usage of the generator, and on the turbulence
intensity, which provides the conditions of usage, i.e. ERG=NR *TI, where NR is the number of rotations in a 10min in-
terval, and the TI is the turbulence intensity during that period, defined as high, medium or low. The latter variable corre-
sponds to the external conditions accelerating the deterioration on the gearbox. For wind turbines exposed to high
turbulence intensity, it is expected that the gearbox will deteriorate much faster than when this intensity is low. As such,
during periods of high turbulence intensity, TI is greater than during periods of low turbulence intensity, therefore increas-
ing the age of the system, effective generator rotations, faster. Experts used historical data and observation of onshore wind
farms to define the boundaries between high, medium and low turbulence intensity, and to assess the impact that differing
levels of turbulence intensity has on the failure rate.

The impact of maintenance actions was also considered. While the previous variables, i.e. generator RPM and turbulence
intensity, increase the deterioration on the gearbox, maintenance actions, if well performed, will have an opposite impact on
the deterioration. It is believed that the maintenance actions will reduce the deterioration of the system and will rejuvenate
the system.

Finally, engineers believed that the survival probability would influence the output of any condition monitoring systems
installed on the turbine. The output of CMSs was used to update the survival probability of the gearbox.

Considering these variables, the dynamic evolution of the system was represented by the DBN given by Figure 4. The
arcs on the figure correspond to direct probabilistic dependencies between the different variables. Straight arrows indicate
relationships within the same time slice, while circular arcs represent relationships from one time slice to another. The
structure of the DBN was validated through interviews with additional experts.

Three different methods were used for quantifying the dependencies in the DBN. First, when large volumes of data were
available, a Kalman filter (KF) was used to quantify the strength of dependency between two variables. Second, for depen-
dencies where data were unavailable but the relationship was well understood by the operator or a proxy variable was cre-
ated, structural equation modelling was used. An example of this is modelling the ERG. For that, the following equation
was used:

ERGtþ1 ¼ ERGt þ γtþ1Gtþ1
� �

1� ρtþ1

� �
(6)

where ERGt + 1 and ERGt represent the ERG at time slices t+ 1 and t, respectively, Gt + 1 quantifies the generator rotations
between the time slices t and t + 1, γt + 1 is the turbulence intensity impact between time slices t and t+ 1, and ρt + 1 represents
the effectiveness of the maintenance action performed, if any. Finally, when data were unavailable and the relationship be-
tween two variables was unintuitive to the operator, copulas were used. Copulas are a flexible method for capturing many
different dependency structures between two variables.

Figure 4. DBN for the deterioration of the gearbox.
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Once the model was fully populated, it was used to forecast future deterioration beyond time step t. Using available data,
the DBN calculated the probability of survival at any instant of time. The historical dataset of SCADA observations was
used along with the KF to update the estimate about the turbulence intensity and generator RPM, i.e. to estimate the true
value of these two variables. From this, the DBN infers ERG, which was then used to estimate the current probability of
failure of the gearbox. The probability was then updated considering CM indications. Additionally, the KF was used to pre-
dict the turbulence intensity and the generator RPM over the next time steps as it can reproduce the turbulence intensity and
generator RPM patterns observed in the previous time steps. In that way, it was possible to predict how the gearbox was
going to deteriorate in the near future, e.g. the next 24 h.

The outputs of the RMM module were an estimation of survival probability of the gearbox at any instant of time, and an
estimation of the impact of possible maintenance actions when necessary. The DBN also estimated the degradation in the
near future by considering the short-term patterns of turbulence intensity and generator revolutions. This output was gen-
erated for each individual turbine and was used by the MS module to determine which action should be performed in each
particular case.

Dependency between each gearbox is not explicitly modelled in the framework. However, as we assume each gearbox
begins operation with the same life and each experiences similar wind conditions, the failure time of each gearbox will be
implicitly dependent.

4. MAINTENANCE SCHEDULING MODULE

Offshore wind turbine maintenance tasks require the scheduling and management of different kinds of resources, such as
skilled personnel, spare parts and special equipment such as vessels and ships. Maintenance teams are dispatched to farms
and turbines in response to the maintenance schedule. A team can execute only one task at a time, and it is assumed that the
team must finish the task before moving to the location of the next task. A domain-specific feature is the dependence of
maintenance tasks on environmental conditions, such as wind speed or sea state. Certain maintenance tasks have maximum
values of each weather parameter, depending on the type of work to be performed, as well as the safety regulations. Many
maintenance tasks require access to appropriate spare parts, some of which may be immediately available and kept in stock,
while others must be ordered, resulting with additional lead times before the maintenance tasks may be scheduled. More
complicated tasks require special equipment such as jack-up barges, which must be hired from service suppliers and are
subject to other demands, and subsequently have a service availability interval, which influences the maintenance window.

Periodic and preventive tasks are planned and released well before they become timely. Maintenance planners assign time
windows to these tasks, in which the date of execution can be chosen according to the actual circumstances, e.g. the main-
tenance commitments of the technicians or the weather conditions.

In addition to failures, production loss is caused by the maintenance tasks themselves, since turbines may have to be
stopped during maintenance. An interesting feature of this problem domain is that the maintenance of one turbine may stop
other turbines as well; since several turbines are connected serially to the grid, the complete disconnection of one turbine
stops its posterior ones as well. For each task, the set of affected turbines can be determined based on the states required by
the given task.

Scheduling consists in determining the set of tasks that should be executed within the scheduling horizon and assigning a
team and a start time to them, in order to minimize the total production loss of the turbines. The objective function contains
both production loss due to failures and cost due to maintenance. Note that from the scheduling point of view, this optimi-
zation criterion belongs to the class of irregular criteria, which is an atypical and difficult-to-handle class. This means that it
may be worth postponing certain tasks, e.g. from a period with high winds to a later period with low winds, even if all the
resources are available to execute it earlier.

Maintenance scheduling for offshore wind farms is a typical multi-variable and multi-objective optimization problem.
Figure 5 illustrates the flow of information within the MS module and with the other ICM and RMM modules. A memetic
algorithm is used to perform the optimization, which consists of the following elements: input/output, parameter setting,
genetic representation, population initialization, reproduction selection, genetic operations, local search, logistic optimizer,
fitness measurement, generational selection, and stopping criteria.

A systematic data structure was constructed owing to the large amount of data required for the optimization of the main-
tenance schedule, which consisted of a 3D matrix consisting of turbine numbers, maintenance task codes and task dates as
the dimensions. The gene is encoded as a combination of elements from these dimensions, which act as keys to locate and
retrieve all other relevant information relating to the gene such as the number of maintenance personnel and transportation
required.

The sequence of maintenance tasks within each possible schedule is encoded as a string, with each maintenance task
represented as a gene in the string. The whole chromosome represents a complete schedule of the required maintenance
tasks. The gene and chromosome encoding is illustrated in Figure 6. This coding scheme may be easily altered based upon
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the size of the scheduling problem and has been developed specifically to schedule maintenance tasks for hundreds of ma-
chines at any time.

A simple hill climbing local search is used to improve the search capability of the memetic algorithm. The local search
chooses the direction randomly and takes one step each time by altering either the maintenance intervention category or the
task date by 1 day. The local search procedure continues if a better solution is found and stops if a worse solution is found.

A logistic satisfier is used to ensure that the schedules generated by the MA do not violate any of the constraints at the
time that the task is scheduled, which include meteo-oceanic, labour and transportation constraints. The meteo-oceanic con-
ditions come from historical data to identify weather windows appropriate for the maintenance tasks. These data reflect
daily averaged wave heights and wind speeds over a 1 year period reflective of the wind farm’s location.

In order to quantify the economic impact of individual maintenance tasks, the production loss due to the corresponding
(present or future predicted) failure and its maintenance time is estimated. The turbine returns to an improved state after

Figure 5. Maintenance scheduling module flow chart.

Figure 6. Gene and chromosome encoding.
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maintenance is undertaken with an associated increase in power and revenue generated. However, the loss of the generated
power cannot be modelled as constant over time: it largely depends on the wind speed, as the production of the turbine is
proportional to this parameter. The wind speeds are averaged over a 24 h time interval using historical data, which allows an
annual variation of power generation to be determined.

The fitness function captures the trade-off between the possible income revenue/power generated against the costs due to
the downtime of the maintenance tasks and its associated direct costs such as transportation and component costs. The fit-
ness function consists of the total sum of possible power generated before and after the scheduled maintenance minus the
total sum of production lost due to the maintenance and the maintenance costs itself as seen in equation 7, where N repre-
sents the number of maintenance actions, i represents the maintenance action index, MCi represents the maintenance cost
for maintenance action i, J represents the number of turbines, j represents the turbine index, PLj,t represents the production
loss on turbine j in time period t, P0 and Pʺ represent the power generated before and after the maintenance action, p0s and
pʺs represent the survival probability before and after the maintenance action, and T and t represent the number and current
time interval.

Max
XJ
j¼1

XT
t¼0

p0sP
0 þ p

00
sP

00
� �

�
XN
i¼1

MCi þ
XJ
j¼1

XT
t¼0

PLj;t

 ! !
(7)

A rolling 1 year maintenance window is typically used, which consists of 365 time intervals. While the maintenance win-
dow can be easily extended, it will impact the optimization since it will increase the search space for scheduling the main-
tenance actions. The overall maintenance cost includes transportation cost, access equipment cost, replacement component
cost and labour cost. The transportation cost for the maintenance actions is not considered within the window of the main-
tenance action if using the same transportation, and the cost for hiring jack-up barges is considered on the first day of hire,
and costs for all maintenance actions using this transportation during the duration of hire are not considered.

In order to quantitatively populate the model, both historical data and expert judgement were used. Examples of vari-
ables include the costs associated with transportation, labour, access and components. For wind turbines, a yearly scheduled
maintenance is typically carried out, which provides a starting point for generating the revised schedule. The goal of the
integrated solution was to automatically manage maintenance for up to 300 turbines at any time and plan the maintenance
schedule over a 12month window.

The MS module generates a project plan for annual and preventative maintenance. This was a list of dates and actions
that should be carried out throughout the year. The output also included an expected cost for the upcoming year including
generated income and costs associated with repairs. Once a maintenance task has been undertaken, the MS module updates
the RMM module so that the reliability of the turbine can be updated.

5. INTELLIGENT INTEGRATED MAINTENANCE SYSTEM—AURA

Aura is a data-driven intelligent integrated maintenance system, with a number of inputs taken from heterogeneous sources.
The modules discussed previously are controlled via a central engine, which monitors the input and output data from each
module as well as from external resources. Figure 7 provides a simplified illustration of how the Aura system transfers data
between each of the three modules.

For typical operation, the ICM module would continuously monitor the SCADA data of the remote assets in order to
detect and diagnose anomalous behaviour. The ICM manages a number of models for each of the turbines within the wind
farm. The data received from these assets include live data being streamed and data specific to condition monitoring units
included on the turbine. Offline data were also used and could either be in the form of historical data collected from similar
turbines on other wind farms or structured judgement elicited from experts. Once new data have been read, they are passed
to the ICM model associated with the turbine that the data originated from. The ICM module analyses the data to detect
whether they are anomalous and diagnoses the fault if it is. Regardless of whether the data are anomalous, the result is
cached for future use by the ICM module.

While the ICM module operates continuously within the Aura system, both the RMM and MS modules are operated in-
termittently in response to the wind farms requirements for the maintenance schedule. This could, e.g. be performed con-
tinuously in real time, as a nightly operation or less frequently (weekly or monthly) and can be easily configured within the
Aura system.

Once the ICM has identified one or more anomalies, the RMM is invoked. The cached ICM data are used to inform the
calculation of the lifetime estimation of the turbine with the actual observed data. The RMM subsequently generates the
lifetime pattern for 365 days from the current point in time. These lifetime estimations reflect the survival probability of
the turbine if a maintenance operation is performed now. The RMM module considers four different maintenance actions:
no maintenance, small repair, large repair and major replacement corresponding to the maintenance intervention categories
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previously discussed. Each of these maintenance actions increases the lifetime of the turbine by varying degrees, with no
maintenance having no effect, and major replacements assumed to return the turbine to near original condition.

Once these maintenance actions and survival probabilities are generated for each of the anomalous turbines, the MS
module within Aura is invoked. The MS module uses these survival probabilities, information relating to existing planned
maintenance, meteo-oceanic and resource constraints in order to generate the maintenance schedule. The MS module con-
siders the different maintenance action options and optimizes the costs associated with the revenue generated for each
anomalous turbine taking into account losses associated with equipment, access, resources and production lost. The MS
module returns a decision in terms of which maintenance action provides the most economically viable choice. These main-
tenance actions for each of the anomalous turbines are added to the existing maintenance schedule, which is then updated
within the Aura system.

The RMM is then re-invoked in order to provide more accurate survival estimations, given that the maintenance sched-
ule indicates that maintenance actions for the anomalous turbines are scheduled for specific days. This step re-estimates the
survival probability for these turbines knowing that a particular maintenance action will occur at some point in the future.

The final maintenance schedule and lifetime models can then be inspected by the wind-farm operator. Each module gen-
erates individual reports corresponding to the function that they provide. These reports include feedback inputs for the
model, e.g. was the scheduled action actually executed, and what maintenance action was performed once on site. The doc-
ument from the ICM module is used for evaluating the effectiveness of the additional condition monitoring equipment on
the system. The RMM module report is used to assess the ‘true’ age of the system and to compare this to the chronological
age. This is important for operators who were keen to manage wear-out failures.

6. CASE STUDY

As outlined in Section 1, the purpose of constructing a holistic asset management system was to enable better control of
large numbers of assets. To demonstrate this behaviour, this section details a case study in which over 100 gearboxes
are monitored for anomalies and subsequently have any maintenance appropriately scheduled. As data for an offshore site
were not freely available at the time of publication, SCADA data have been taken from a large-scale onshore site and ap-
plied in the context of an offshore wind farm. This refers to the relevant logistical operations being translated to an offshore
equivalent. All other datasets are reflective of offshore wind farms.

A typical wind farm consists of a number of turbines, switch gear and transformers (mostly located within the wind
farm) and an onshore substation. All systems and components within the wind farm need to be maintained. Turbines are
typically visited twice a year, and each visit has a duration of 3–5 days. In addition to turbine maintenance, regular inspec-
tions and maintenance are undertaken for the sub-structures, the scour protection, the cabling and the transformer station.

Figure 7. Data flow within the Aura system.
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6.1. Test case setup

The raw data used in the case study are composed of 12months of historical SCADA and alarm logs, which were
used by both the ICM and RMM modules, where the RMM module used a small subset of SCADA data relevant to
the generator. These data were taken from a fleet of over 100 onshore gearboxes, which have been operating for
approximately 3 years. However, in the interest of demonstrating the behaviour of the system, some turbines were
assumed to be newly commissioned, while others were assumed to be several years old and others largely degraded.
These assumptions were reflected in the output of the RMM and ICM modules. The following sections shall expand
upon these details where relevant.

Table II illustrates the different sources of data, including structured expert judgement that was used in AURA. This in-
cludes various maintenance intervention scenarios, covering resources required for specific maintenance tasks and their re-
spective costs. The parameters for the Weibull distribution used by the RMM module, which represents the lifetime
survival probability of a component, have also been elicited, to conform to the expected behaviour of an offshore wind
gearbox.

For ease of presentation, this section shall only enumerate the results of specific gearboxes, which offer insight into ho-
listic operation. These turbines are representative of the fleet as a whole, in that they reflect turbines of varying ages and are
known to exhibit a variety of interesting faults, which can be categorized as trivial, minor or major.

As stated, the case study used historical SCADA data as input to the system. Naturally, this leads to difficulties in
evaluating the performance of both the RMM and MS modules, as the observed SCADA data will not necessarily match
the expected behaviour of a turbine once maintenance operations have been executed. That is, if the ICM module
indicates that a gearbox is in an advanced state of degradation, which in turn causes a large-scale maintenance operation
to be scheduled and then executed, the subsequent SCADA samples will still demonstrate the degraded behaviour of the
original gearbox.

There are two possible solutions to this problem. The first was that the system can actually be deployed and utilised on a
real-world wind farm, or can at least be accessed by all maintenance performed on the site. The second was that a model of
turbine component behaviour could be developed, which can then be sampled, and could move the system towards
model-based reasoning.

In the context of demonstrating the approach, accessing maintenance records of the wind farm was challenging, while
the latter case was simply intractable-if such a model could be constructed, it would negate the need for the ICM module.
Therefore, the results presented in this section are done so with the understanding that they cannot be empirically verified
without further study.

The Aura system was initially provided with information to generate a representation of the existing state and mainte-
nance plans of the wind farm. First, the ICM module was provided with a historical dataset containing relevant SCADA
and alarm logs, which were used to construct the random forest associated with each turbine using the process described
previously. The training of this model was performed offline, prior to system initialisation. The size and breadth of this
dataset were sufficient to contain a wide variety of turbine conditions, such that the resulting model can produce accurate
classifications. Therefore, at least 1 year of observations are recommended. Once trained, the individual classifiers in the RF
were used to estimate the state of any SCADA data fed in. Figure 8 visualized this process for a simple RF containing three
underlying classifiers.

A subset of this SCADA data was also used by the RMM module to train the KF. Figure 9 shows an example of the
mapping of the KF to the observations of turbulence intensity and generator RPM. The solid green line corresponds to
the KF, which illustrates the predictions for the turbulence intensity and generator RPM, once the KF has learnt the pat-
terns. The age of each turbine within the wind farm was also provided to the RMM module, in order to derive the correct
component survival distribution. In Figure 10, we can see the effects of different ranges of turbulence intensity on the sur-
vival probability curve. The survival probability decays much faster under high turbulence intensity. The RMM module
initially generated a survival probability for each turbine within the wind farm, and using the turbine age, it was possible
to predict the survival probability for each turbine.

The MS module was provided with the detail relating to existing scheduled maintenance, as shown in Table III, in which
seven turbines have an annual inspection, which takes place midway through the year in June/July.

Table II. The source of the various inputs for each module.

Module Raw data Expert derived Aura derived

ICM SCADA, alarms — —

RMM SCADA (partial) Weibull parameters ICM output, MS output
MS Resource availability Offshore logistics/maintenance operations and

costs, annual meteo-oceanic conditions
RMM output
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Figure 8. Fault detection in the ICM module, using the RF model associated with the turbine.

Figure 9. KF mapping to observations of turbulence intensity and generator RPM.

Figure 10. Turbulence intensity impact on the survival probability curve.
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Additional information for each of the maintenance interventions was provided to the MS module relating to the com-
ponent cost, number of personnel required to perform the maintenance task, the transportation cost, the mean time to repair,
and the wind and wave limits for the maintenance intervention. This information formed the basis for the MS module to
consider current availability of personnel and transportation in scheduling additional maintenance.

6.2. System flow

Once this initial data were supplied, the system was launched, and the process of streaming SCADA data from remote
sources begun. In the case study, streamed data were assumed to arrive every 10min but was not required to do so—any gaps
were ignored. Figure 11 shows a high-level overview of the fault detection and resolution process as data flows between
modules.

As data entered the Aura system, these were logged to a database for historical access, before being passed onto the ICM
module. Once inside this module, they were delegated to the appropriate model (e.g., data from Turbine 29 were delegated
to the bespoke fault detection model for Turbine 29). The output of this module was a binary fault classification, indicating
whether the SCADA sample was normal or anomalous. If it was anomalous, the sample was further analysed by the ICM
module to attempt diagnosis of the fault. Regardless of this classification, the resulting labelled SCADA sample was saved
to a temporary turbine-specific buffer until the RMM module was triggered.

The RMM module used the observations taken from the SCADA data and ICM output and adjusted the lifetime model
of the turbine based upon this concrete evidence. This enabled the operator to view the expected life remaining on a turbine,
based upon observed data rather than theory alone.

With the production of the lifetime estimation curves complete, the RMM module then computed how the probability of
survival was affected by performing a maintenance intervention at the current time. That is, for each possible maintenance
operation, a further lifetime estimation was produced based upon the assumption that the maintenance task was executed.
Additionally, the original lifetime estimation was also included as an example of performing no maintenance (no improve-
ment in component state).

The final part of the workflow was for the MS module to schedule appropriate maintenance for the turbine, given the
context provided by the RMM module estimations. Table IV shows the new maintenance schedule produced at the end
of month 3. The table illustrates the maintenance action to be performed (which may be no action required), the component
on which the action may be performed, the transportation required, and the date and duration for the maintenance for each
turbine. In addition, Table IV indicates the impact of undertaking no maintenance for each turbine, which was calculated on
the basis of the revenue generated within the operating window, and was used as a basis to determine the economic impact
of performing maintenance. The expected profit accounts for the revenue generated as a result of the specified scheduled
maintenance.

Table III. Annual maintenance.

Turbine Maintenance State Component Transportation Schedule date Duration (day)

6 Annual service Degraded N/A Workboat/helicopter Day 148 0.3
9 Annual service New N/A Workboat/helicopter Day 149 0.3
15 Annual service Mid-life N/A Workboat/helicopter Day 150 0.3
29 Annual service Degraded N/A Workboat/helicopter Day 151 0.3
56 Annual service New N/A Workboat/helicopter Day 152 0.3
85 Annual service and

medium repair
Degraded Gearbox Workboat/helicopter Day 153 1

101 Annual service New N/A Workboat/helicopter Day 154 0.3

Figure 11. Fault detection and resolution in Aura.
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The schedule was produced using the techniques outlined in Section 4, whereby tasks were assigned based upon their cost,
and revenue lost from associated downtime. In general, this means that maintenance tasks were not assigned to be executed
during winter months when wind speeds and revenues were at their highest, and meteo-oceanic conditions were at their worst.

Table IV indicates that turbines 6, 29 and 85, having an advanced state of degradation, have benefitted from major and
medium replacements with significant increases in revenue as a result of the maintenance action. Turbine 15 has a lesser
degree of degradation but benefits from a small repair. Turbines 9, 56 and 101 have no maintenance action planned other
than the annual inspection owing to being new relatively turbines. The benefits are measured here with respect to the ex-
pected additional income from the turbine. An alternative approach would be to use the Levelised Cost of Energy, which
would require the management of additional information relating to investment, infrastructure and all operational
expenditures.

With a schedule constructed and tasks assigned, control returned to the RMM module, which again updated the esti-
mated lifetime for each turbine based upon any newly assigned future maintenance tasks.

Once the MS module has created a schedule and the RMM module has completed the final update process and modified
the turbine lifetime estimations, Aura passed the control back to the ICM module. Aura returned to monitoring the incom-
ing SCADA data and buffering data in preparation for the next invocation of the RMM and MS modules, with any main-
tenance tasks, which execute during the buffer period similarly cached in order to update the RMM models with observed
maintenance (as opposed to only observed SCADA and ICM data). This ensured that the component lifetime was indeed
extended by the respective task, even if the RMM module was not immediately invoked.

7. CONCLUSION

A novel architecture and system for the provision of RCM within the offshore wind power generation sector is presented.
The architecture was created through a consideration of the data that are available from the various online and offline
sources, and how this could be used to support the development of an intelligent, autonomous system. The online sources
specifically related to the SCADA and alarm data gathered from the wind farm, as well as the data to be generated within
the system. These data were augmented with offline data relating to existing fault detection practices, MTTF, component
dependencies, scheduled maintenance and meteo-oceanic conditions, for example. The functionality required for the pro-
vision of an intelligent integrated maintenance system related to fault detection and diagnosis, health and survivability mon-
itoring, and MS.

The system demonstrates for the first time the use and integration of state-of-the-art artificial intelligence techniques: RF
for condition monitoring, DBNs for RMM and a mimetic algorithm for MS. The Aura system was constructed to respond to
the demands of maximizing the revenue created from an offshore wind, operating between 13 and 195 km from shore, by
ensuring the availability of the associated assets through a preventative maintenance regime. The system was developed as
three modules, corresponding to the required functionality, and integrated and controlled within the Aura engine.

A case study using 12months of SCADA and alarm data from a wind farm consisting of over 100 turbines was used to
demonstrate the system. Specific focus was placed upon seven turbines, which were known to exhibit a range of different
anomalous behaviours. The case study demonstrated the following: the automatic detection of faults within these turbines;
the impacts these faults had on the survivability of the turbines; the assessment of different maintenance actions with the
objective of maximizing availability; and the scheduling of maintenance and the updating of turbine survivability in re-
sponse to the maintenance action.

The purposes of the case study were to illustrate the integration of the three methods and to demonstrate the potential of
the framework. Further research is required to validate and refine parts of the modelling. For example, the data that were
used in the case study only covered a 1 year period in the turbines’ lifetime. A fuller study is required to evaluate the choice
of the Random Forrest and the Weibull distribution over a longer period of data, and to assess to what extent ERG captures
the degradation of a wind turbine.

Table IV. Scheduled maintenance.

Turbine Maintenance Component Transportation Schedule date Duration (day) No action Expected profit

6 Major replacement Gearbox Jack-up vessel Day 165 5 £715k £1.46M
9 No action N/A N/A N/A N/A £1.81M £1.81M
15 Small repair Gearbox oil pump Workboat Day 258 1 £1.08M £1.18M
29 Medium replacement Gearbox bearing Workboat Day 165 1 £951k £1.14M
56 No action N/A N/A N/A N/A £1.78M £1.78M
85 Major replacement Gearbox Jack-up vessel Day 160 5 £664k £1.10M
101 No action N/A N/A N/A N/A £1.81M £1.81M
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