Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Friction stir welding of 6mm thick carbon steel underwater and in air

Baillie, P. and Campbell, S. W. and Galloway, A. M. and Cater, S. R. and McPherson, N. A. (2015) Friction stir welding of 6mm thick carbon steel underwater and in air. Science and Technology of Welding and Joining, 20 (7). pp. 585-593. ISSN 1362-1718

Text (Baillie-etal-FSW-2015-Friction-stir-welding-of-6mm-thick-carbon-steel-underwater-and-in-air)
Accepted Author Manuscript

Download (1MB)| Preview


    This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to the presence of a slightly less angular grain structure than the samples welded in air. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.