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Subwavelength grating Bragg grating filters 
in silicon-on-insulator 
 
J. Wang, I. Glesk, and L. R. Chen 

 
Narrowband filters based on Bragg gratings (BGs) in subwavelength 
grating (SWG) waveguides in silicon-on-insulator are reported. The SWG 

BGs are fabricated using electron beam lithography with a single etch. For 

SWG BGs 1.12 mm in length, the measured 3 dB bandwidths are ~ 0.5 nm 

and have a peak reflectivity as high as 94.4% in the C-band.  

 

Introduction: There is an increasing need for integrated solutions in 

optical communications and interconnections applications [1]. In the past 

few years, a variety of active and passive devices as well as integrated 

subsystems in CMOS-compatible silicon photonics platforms have been 

realized [2]. Subwavelength grating (SWG) waveguides have attracted 

interest due to their potential for low loss and flexibility in tailoring the 

effective index [3,4].  Indeed, a number of SWG-based devices/building 

blocks in silicon-on-insulator (SOI) have been developed, including 

waveguide crossings [5], bends [6], couplers [6-8], and ring resonators [9]. 

Bragg gratings (BGs) have important applications as optical filters and for 

implementation in more complex wavelength selective devices. A number 

of BGs and BG-based devices in SOI have been reported [10-13]. 

Recently, we proposed BG filters in SWG waveguides by interleaving two 

SWG waveguides with different duty cycles [9]. In this paper, we provide 

experimental verification of such SWG BG filters. The fabricated devices 

have high reflection (> 90%), narrow 3 dB bandwidth (0.5 nm), and 

occupy a relatively small footprint.  
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Fig. 1  Top view of an SWG waveguide and an SWG BG.  
 
Device design and fabrication: Fig. 1 compares the schematic of an SWG 

waveguide and an SWG BG in SOI. The effective index of the SWG 

waveguide depends on the duty cycle      , where a is the is the width 

of the high index medium (here Si) and   is the period. An SWG BG can 

then be realized by interleaving two SWG waveguides with different duty 

cycles f1 = a1/1 and f2 = a2/2; the SWG BG has a period of 1 + 2. By 

varying f1 and f2, we create a periodic variation in the effective index and 

can thus obtain Bragg reflection [9].   

The cross-section of the SWG waveguides used in our experiments is 

shown in Fig. 2a.  The width and height of the silicon layer are 500 nm 

and 220 nm, respectively; it sits on top of a 3 µm thick buried oxide 

(BOX) layer and has an index-matched top oxide cladding.  We consider 

SWG waveguides with   = 280 nm (to obtain a transmission window 

spanning the C-band) and 1,000 periods. Two SWG tapers are used to 

convert light into (and from) a Bloch mode before (and after) propagating 

through the SWG waveguide, see [5,9] for details. A Y-branch is used to 

extract the reflection response of the SWG BGs. For the SWG BGs, we 

use 1 = 2 = 280 nm and vary f1 and f2 by changing a1 and a2. The length 

of the grating is 1.12 mm (each of the interleaved SWG waveguides 

comprises 1,000 periods). Vertical grating couplers (VGCs) [14] 

optimized for TE transmission are used to couple light in and out of the 

device. A full layout of the device is shown in Fig. 2b; it occupies a 

footprint of 1.18 mm  254 m. The devices were fabricated at the 

University of Washington Nanofabrication Facility using electron beam 

lithography with a single full etch. An SEM image of an SWG BG (before 

deposition of the top oxide cladding) is shown in Fig. 2c.  
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Fig. 2 SWG BGs 

a Schematic of device cross-section 

b Device layout  

c SEM of the fabricated SWG BG prior to oxide cladding deposition 

 

Experimental results and discussion: A tunable laser scanned in steps of 

10 pm and an optical power meter are used to measure the spectral 

responses of the devices. The total fiber-to-fiber loss is typically 15 dB. 

Fig. 3a shows the measured transmission response of the SWG waveguide 

without and with a BG based on f1 = 50% and f2 = 48%.  When there is no 

modulation of the effective index, no spectral features appear within the 

waveguide transmission band (the general variation in amplitude is due in 

part to the spectral response of the VGCs).  On the other hand, the SWG 

BG exhibits a clear rejection peak at a resonant wavelength of 1546.8 nm.  

Fig. 3b shows a zoom of the measured transmission and reflection 

responses about 1546.8 nm:  the transmission loss is -12 dB corresponding 

to a peak reflectivity of 90.4%; the 3 dB bandwidth is 0.5 nm. 
 

 
 

Fig. 3 Measured response of SWG waveguide and SWG BG (f1 = 50% 

and f2 = 48%).   

a Transmission spectrum of the SWG waveguide and the SWG BG  

b Zoom of transmission and reflection responses about the resonant peak 

at 1546.8 nm  

 

By varying f2, we can tune the Bragg wavelength.  In particular, we can 

shift the reflection peak to shorter wavelengths by reducing f2 (i.e., 

decreasing the effective index) [9].  Fig. 4 compares the reflection 

response of the above SWG BG to one with f1 = 50% and f2 = 44%; the 

center wavelength of the reflection peak has shifted from 1546.8 nm down 

to 1533.2 nm.  The peak reflectivity of the second grating is 94.4% and 

also exhibits the same 3 dB bandwidth of 0.5 nm.  
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Summary: We have demonstrated and experimentally verified SWG BG 

filters in SOI. The SWG BGs exhibit high reflectivity (> 90%) and a 

relatively narrow reflection bandwidth (0.5 nm) while occupying a 

compact footprint (1.18 mm  254 m). The Bragg wavelength can be 

tuned by changing the duty cycle of the interleaved SWG waveguides. The 

filters are compatible with other SWG building blocks and can be used to 

develop more complex devices with enhanced functionality for 

applications in communications and sensing. 

 

 
 

Fig. 4 Reflection response of SWG BGs 

a  f1 = 50% and f2 = 44% 

b  f1 = 50% and f2 = 48% 
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