

A Relationally Parametric Model of Dependent Type Theory

Robert Atkey1, Neil Ghani2, and Patricia Johann3

1 bob.atkey@gmail.com

2 University of Strathclyde, neil.ghani@strath.ac.uk

3 Appalachian State University, johannp@appstate.edu

Abstract

Reynolds’ theory of relational parametricity captures the invariance of polymorphically typed programs under

change of data representation. Reynolds’ original work exploited the typing discipline of the polymorphically

typed λ-calculus System F, but there is now considerable interest in extending relational parametricity to type

systems that are richer and more expressive than that of System F. This paper constructs parametric models of

predicative and im-predicative dependent type theory. The significance of our models is twofold. Firstly, in the

impredicative variant we are able to de-duce the existence of initial algebras for all indexed functors. To our

knowledge, ours is the first account of parametricity for dependent types that is able to lift the useful deduction of

the existence of initial algebras in parametric models of System F to the dependently typed setting. Secondly, our

models offer conceptual clarity by uniformly expressing relational parametricity for dependent types in terms of

reflexive graphs, which allows us to unify the interpretations of types and kinds, instead of taking the relational

interpretation of types as a primitive notion. Expressing our model in terms of reflexive graphs ensures that it has

canonical choices for the interpretations of the standard type constructors of dependent type theory, except for the

interpretation of the universe of small types, where we formulate a refined interpretation tailored for relational

parametricity. Moreover, our reflexive graph model opens the door to generalisations of relational parametricity,

for example to higher-dimensional relational parametricity

mailto:bob.atkey@gmail.com
mailto:neil.ghani@strath.ac.uk
mailto:johannp@appstate.edu

1. Introduction

Reynolds’ theory of relational parametricity captures the invariance
of polymorphically typed programs under change of data represen-
tation [28]. Relational parametricity has been shown to yield a wide
range of useful and surprising consequences, including free theo-
rems [35], data type representations [13], optimisation of recursive
programs [18], and geometric invariance properties [3]. Reynolds’

original work exploited the typing discipline of the polymorphi-
cally typed λ-calculus System F, but there is now considerable in-
terest in extending relational parametricity to type systems that are
richer and more expressive than that of System F.

Relational parametricity for systems with type-level computa-
tion — of which System Fω is the prototypical example — has
been studied by Vytiniotis and Weirich [33] and by Atkey [2]. The
latter builds on earlier work by Hasegawa [14], who gives general
requirements a model must satisfy in order to interpret System Fω.
The extra expressive power of System Fω allows for Church En-
codings of indexed types. For example, the standard example of a
Generalised Algebraic Datatype (GADT) [7] for typed expressions
containing constants and pairing can be represented by the follow-
ing System Fω type:

λτ.∀α:∗→∗.(∀σ.σ→α σ)→(∀σ, σ′.α σ→α σ′→α(σ×σ′))→α τ
Relational parametricity can be used to show that this type enjoys
an initiality property [2], showing that it is isomorphic to the normal
GADT of typed expressions.

By introducing a kind of natural numbers, it is also possible
to encode in System Fω interesting indexed types like length-
indexed vectors. However, due to the rigid separation of types and
terms in System Fω, type-level and term-level naturals are not the
same thing, which leads to duplication and loss of expressivity.
Dependent type theories weaken the distinction between types and
terms, allowing terms to appear in types. It is therefore natural to
ask whether or not relational parametricity extends to systems with
type dependency, and whether or not the consequences of relational
parametricity (suitably generalised) carry over as well.

In this paper, we answer both these questions in the affirmative.
We build a model of dependent type theory (in predicative and im-
predicative variants) that naturally extends Reynolds’ original rela-
tionally parametric model. We also show that, within the impred-
icative model, every indexed functor F has an initial algebra, given
by the dependently typed Church encoding:

λx : X. ΠA : X → U. (Πx : X.T(FAx)→ T(Ax))→ T(A x)

(The symbol U stands for the universe of small types, and T trans-
forms a small type into a proper type; we define the syntax of
dependent types in Section 3.) To our knowledge the model we
present in this paper is the first parametric model, syntactic or se-
mantic, of dependent type theory to establish this key theorem.

The question of the existence of relationally parametric mod-
els of dependent type theory has already been established as rele-
vant for applications: Chlipala [8] assumes relational parametricity
for representing higher-order abstract syntax, and Nanevski et al.
[23] assumes properties of type abstraction for enforcing security
properties. In this paper we demonstrate that relationally parametric
models of dependent type theory do exist, though we leave ques-
tions about potential applications to future work.

Approaches to Understanding Relational Parametricity Since
Reynolds’ original model-theoretic formulation, relational para-

metricity has been studied in a number of settings. Reynolds’ origi-
nal model was elucidated by Bainbridge et al. [4], who also moved
to a PER-based interpretation of types to handle foundational set-
theoretic problems, caused by impredicativity, with Reynolds’ orig-
inal formulation. Robinson and Rosolini [30] studied Reynolds’
model from the point of view of internal categories, again to work
around foundational problems with the semantics of impredica-
tivity. More usefully for us, Robinson and Rosolini reformulated
Reynolds’ original model in terms of reflexive graphs. Reflexive
graphs capture the essence of relationally parametric models: types
are simultaneously interpreted as sets and as relations between sets,
with a distinguished reflexive relation, called the “equality rela-
tion”, from any set to itself, and open types are interpreted as mor-
phisms between reflexive graphs. The model of dependent type the-
ory that we construct in this paper is built on the category of re-
flexive graphs and reflexive graph morphisms that Robinson and
Rosolini used to interpret the types of System F. Reflexive graph
models of parametricity have also appeared implicitly in the work
of Hasegawa [13, 14], and explicitly in the work of Dunphy and
Reddy [11], both in settings without type dependency.

Other approaches to understanding parametricity include Pitts’
operational models of programming languages with polymorphic
types and recursion [24]; Plotkin and Abadi’s logic for parametric-
ity [26]; and Wadler’s translation of System F into second-order
predicate logic [34].

The study of relational parametricity for systems with depen-
dent types originates with Takeuti [31] and has recently been taken
up by Bernardy et al. [5] and Krishnaswami and Dreyer [19]. Both
Takeuti and Bernardy et al. study relational parametricity for de-
pendent types via syntactic translations from one type theory to
another. Krishnaswami and Dreyer construct a realizability model
of the Calculus of Constructions, using Quasi-PERs to simultane-
ously define the underlying and relational interpretations of types.
They demonstrate the adequacy of the Church encoding of the non-
indexed initial algebra representing the natural numbers, but do not
mention the Church encodings of indexed initial algebras that we
consider in this paper.

The distinguishing feature of the parametric model of depen-
dent types developed in this paper is that we follow Robinson and
Rosolini in taking the interpretation of types as reflexive graphs as
primitive, rather than explicitly seeking a relational interpretation
of dependent types, as was done in the work of Takeuti, Bernardy
et al. and Krishnaswami and Dreyer. In order to capture relational
parametricity, our model interprets the universe U of small types in
terms of sets and relations, so that we recover a relational interpre-
tation of types within the setting of reflexive graphs (Section 4.3).
By taking reflexive graphs as primitive, we can offer the following
two significant contributions:

• At a results level, as we have mentioned above, we are able to
show that the impredicative variant of our reflexive graph model
contains initial algebras for all indexed functors (Section 5.4).
The reflexive property of reflexive graphs plays a crucial role
in the proof, being the appropriate generalisation of the key
identity extension property of relationally parametric models
of System F. Our models for both the predicative and impred-
icative variants also validate free theorems about polymorphic
terms (Section 5.1), in the style of Wadler [35].

• At a conceptual level, reflexive graphs offer both canonical
choices when building parametric models, and insight into the
structure of relational parametricity. Robinson and Rosolini
used reflexive graphs to bring clarity to relationally parametric
models of System F, and here we use reflexive graphs to bring
clarity to relationally parametric models of dependent type the-
ory. Since reflexive graph models are presheaf models, we are

provided with canonical choices of much of the structure of de-
pendent types: for example, there is a canonical choice of inter-
pretation of Π-types, up to isomorphism. For the interpretation
of the universe of small types there is no canonical choice. The
obvious choice is to capture a semantic notion of smallness, us-
ing a construction due to Hofmann and Streicher. However, we
demonstrate that smallness by itself is inadequate for relational
parametricity, and we identify two further semantic properties,
discreteness and proof-irrelevance, that must be captured by our
interpretation of a universe of small types (Section 4.3).

Structure of the Paper
• In Section 2 we trace a path from the original relationally

parametric model of Reynolds, with its explicit use of rela-
tions, through to the reflexive graph formulation of parametric-
ity, originally due to Robinson and Rosolini and, separately,
Hasegawa. Since most presentations of relational parametric-
ity for System F are explicitly formulated in terms of relations
(e.g., Wadler’s “Theorems for Free”), we carefully demonstrate
that, at the level of System F, the relational and reflexive graph
formulations are equivalent. This gives us the necessary founda-
tion on which to build a parametric model of dependent types.

• Section 3 recalls necessary syntactic and semantic background.
We set out the precise variants of Martin-Löf Type Theory
(predicative and impredicative) that we will model. We also re-
call the definition of Categories with Families (CwFs), a sound
and complete class of categorical models of dependent type the-
ory.

• We construct our parametric models of dependent types in Sec-
tion 4 by showing that the category of reflexive graphs forms a
CwF. The key feature of our models, apart from our use of re-
flexive graphs, is in our interpretation of the universe U of small
types. We examine the necessary features that the interpretation
of U must capture (namely smallness, discreteness, and proof-
irrelevance) and build them into the model.

• With our parametric models in hand, we demonstrate several
consequences of it in Section 5. We show that our model sup-
ports simple free theorems, as well as the construction of initial
algebras for arbitrary indexed functors.

• Section 6 concludes and offers directions for future work.

2. Relational Parametricity and Reflexive Graphs
In this section we introduce the semantic structures used to con-
struct our parametric model of dependent types. To this end, we first
recall in Section 2.1 the “direct” method for building relationally
parametric models of System F, as originally proposed by Reynolds
[28] and elucidated by Bainbridge et al. [4]. We then show in Sec-
tion 2.2 how to reformulate this model in terms of reflexive graphs,
following Robinson and Rosolini [30].

Any model of System F, or any extension of it, must confront
the issue of modelling impredicative type quantification. Reynolds
showed that classical set-theoretic models of impredicative poly-
morphism cannot exist [27]. To overcome this problem, we build
our models of impredicative type theories in an impredicative meta-
theory. Specifically, we use the Calculus of Inductive Constructions
with the predicative Type universe hierarchy, an impredicative uni-
verse Set, a (disjoint) impredicative universe Prop, and axioms for
functional extensionality, and proof irrelevance and propositional
extensionality in Prop. This theory is implemented in the Coq proof
assistant [9] with the -impredicative-set option, and the three
axioms postulated. We work informally within this meta-theory, us-
ing set-theoretic notation. By taking this synthetic approach, we
can dispense with the technicalities of constructing a model within

(α : ∗) ∈ Γ

Γ ` α : ∗
Γ ` A : ∗ Γ ` B : ∗

Γ ` A→ B : ∗
Γ, α : ∗ ` A : ∗
Γ ` ∀α:∗. A : ∗

Figure 1. Well-kinded Types in System F

classical set theory using PERs or internal categories. A fully for-
malised relationally parametric model of System F has been con-
structed in this setting by Atkey [1].

2.1 Relational Models of Parametricity for System F
The well-kinded types of System F are shown in Figure 1. By these
rules, well-kinded types are either type variables, function types,
or universally quantified types. Kinding contexts Γ are lists of type
variable/kind pairs α : ∗ that do not contain duplicate type variable
names. In System F, there is only the base kind ∗ of types.

Interpretation of Types In the model presented by Bainbridge
et al. [4], each well-kinded type Γ ` A : ∗ is assigned two
interpretations: an underlying interpretation JΓ ` A : ∗Ko that
interprets a type as a function on the universe U of small sets, and
a relational interpretation JΓ ` A : ∗Kr that interprets a type as
a transformer of relations between underlying interpretations. If,
for any two sets X,Y ∈ U , Rel(X,Y) denotes the set of binary
relations between X and Y , and if |Γ| stands for the number of
members of Γ, then the underlying interpretation and the relational
interpretation of Γ ` A : ∗ have the following meta-theoretic types:

JΓ ` A : ∗Ko ∈ U |Γ| → U
JΓ ` A : ∗Kr ∈ ∀γ1, γ2 ∈ U |Γ|. Rel|Γ|(γ1, γ2)→

Rel(JΓ ` A : ∗Koγ1, JΓ ` A : ∗Koγ2)

The underlying interpretation and the relational interpretation of
Γ ` A : ∗ are explicitly linked by the appearance of the underlying
interpretation in the type of the relational interpretation. The two
interpretations are also linked by the identity extension property,
which states that the relational interpretation of any type Γ ` A : ∗
preserves equality:

∀γ ∈ U |Γ|. JΓ ` A : ∗Kr γ γ Eqγ = EqJΓ`A:∗Koγ

Here, EqX is the equality relation on the setX , and Eqγ for a tuple
of sets γ = (X1, ..., X|Γ|) is the tuple (EqX1

, ...,EqX|Γ|
).

Identity extension is the key property that makes a model re-
lationally parametric, rather than just logical relations over an ex-
isting model. We can read it as saying that every element of the
interpretation of a closed type is related to itself by the relational
interpretation of that type. Therefore, identity extension is similar
to the abstraction theorem (see Interpretation of Terms at the end
of this subsection), except that it applies to all elements of the de-
notation of a type, not just the denotations of terms. Consequently,
we are able to use the relational interpretation of types to reason
about arbitrary elements of the denotations of those types, not just
elements that are the interpretations of terms.

As we shall see when we construct the interpretation of the type-
theoretic universe of small types in Section 4.3 below, our model
of dependent types will satisfy the (suitably generalised) identity
extension property for this universe. Identity extension is essential
in our proof of the existence of initial algebras in Section 5.4.

A consequence of requiring identity extension is that the under-
lying interpretation and the relational interpretation must be defined
simultaneously. This is due to the interpretation of types of the form
Γ ` ∀α: ∗ .A : ∗. Indeed, if we do not cut down the underlying
interpretations of universal types to include only the “parametric”
elements, then we will be unable to prove the identity extension

property. This cutting down is shown in Bainbridge et al.’s defini-
tions of the underlying interpretations and relational interpretations
for universal types, here adapted to our setting:

JΓ ` ∀α: ∗ .A : ∗Koγ =
{x : ∀X ∈ U . JΓ, α : ∗ ` A : ∗Ko(γ,X) |
∀X,Y,R ∈ Rel(X,Y).
(x X, x Y) ∈ JΓ, α : ∗ ` A : ∗Kr(γ,X)(γ, Y)(Eqγ , R)}

JΓ ` ∀α: ∗ .A : ∗Krγ1γ2ρ =
{(x, y) | ∀X,Y,R ∈ Rel(X,Y).
(x X, y Y) ∈ JΓ, α : ∗ ` A : ∗Kr(γ1, X)(γ2, Y)(ρ,R)}

We will refer back to this definition when we construct the inter-
pretation of dependent products (Π-types) in our relationally para-
metric model of dependent types in Section 4.4.

Interpretation of Terms A well-typed term of System F is deter-
mined by the typing judgement Γ; Θ ` M : A where Γ is a kind-
ing context, Θ is a typing context consisting of variable name/type
pairs xi : Ai where eachAi is well-kinded with respect to Γ, andA
is also well-kinded with respect to Γ. We write Γ ` Θ to indicate
when all the types in the typing context Θ are well-kinded with
respect to the kinding context Γ. We omit the (entirely standard)
typing rules that generate the judgement Γ; Θ `M : A.

The interpretation of types that we sketched above is extended
to an interpretation of typing contexts Θ by tupling together the
interpretations of the constituent types and using the standard log-
ical relations interpretation of product types. Each well-typed term
Γ; Θ ` M : A is interpreted as a family JΓ; Θ ` M : AKo of
functions from the underlying interpretation of the typing context
Θ to the underlying interpretation of the type A, indexed by the
underlying interpretations of the free type variables:

JΓ; Θ `M : AKo : ∀γ ∈ U |Γ|. JΓ ` ΘKoγ → JΓ ` A : ∗Koγ
Because the underlying interpretations and relational interpreta-
tions of types are mutually defined, we must simultaneously define
JΓ; Θ ` M : AKo and prove the following property, which states
that the relational interpretations of Θ and A are preserved:

∀γ1, γ2 ∈ U |Γ|, ρ ∈ Rel|Γ|(γ1, γ2),
θ1 ∈ JΓ ` ΘKoγ1, θ2 ∈ JΓ ` ΘKoγ2.

(θ1, θ2) ∈ JΓ ` ΘKrγ1γ2ρ⇒
(JΓ; Θ `M : AKo γ1 θ1, JΓ; Θ `M : AKo γ2 θ2) ∈

JΓ ` A : ∗Krγ1γ2ρ

This preservation of relations property has been variously called
Reynolds’ Abstraction Theorem [28], the Fundamental Theorem
of Logical Relations [25], and the Parametricity Theorem [21].

2.2 Reflexive Graph Models of Parametricity for System F
The two-level approach of the Reynolds/Bainbridge et al. model,
in which types are assigned an underlying interpretation and a rela-
tional interpretation, works well for the relatively simple setting of
System F. However, it is difficult to see how to extend this approach
to allow for more complex features such as higher kinds, which al-
low function kinds such as ∗ → ∗, and type-level computation, as is
found in dependent type theories. The primary difficulty lies in ex-
tending the definition of the identity extension property. When we
only considered the base kind ∗, interpreted as the collection of sets
X ∈ U , there was an obvious notion of “equality relation”. But it
is not so obvious what “equality relation” should mean when inter-
preting higher kinds. One complication is that, no matter what our
notion of “equality relation” ends up being, an equality relation for
a higher-kinded type must actually be a relation transformer. This
complication is further compounded when attempting to interpret a
dependent type theory in which types may depend on terms as well
as types. Fortunately, by using reflexive graphs, as introduced by

Robinson and Rosolini [30], we can construct a parametric model
of System F that naturally extends to dependent types.

Definition 1. A reflexive graph is a 5-tuple (ΓO,ΓR,Γrefl ,Γsrc ,Γtgt)
comprising a pair of sets ΓO and ΓR, together with three functions

ΓO

Γrefl

��
ΓR

Γsrc

==
Γtgt

aa

such that Γsrc ◦Γrefl = idΓO = Γtgt ◦Γrefl . A morphism f between
reflexive graphs Γ and ∆ is a pair of functions (fo, fr) that makes
every square the following diagram commute:

ΓO
fo //

Γrefl

��

∆O

∆refl

��
ΓR

fr //

Γsrc

==
Γtgt

aa

∆R

∆src

==
∆tgt

aa

The set ΓO is called the set of objects, and ΓR is called the set of
relations, of the reflexive graph.

We use reflexive graphs for two purposes: to model collections
of types, and to model specific types. The first use takes ΓO to be
a set of sets and ΓR to be a set of relations over those sets. Each
relation γr ∈ ΓR is thus a relation between Γsrc(γr), and Γtgt(γr)
and each set γo ∈ ΓO has a distinguished relation Γrefl(γo) relating
γo to itself. This intuition underlies the following example.

Example 1. If U is a universe of small sets, then the kind ∗ of types
can be interpreted as a reflexive graph (also called ∗) as follows:

∗O = U ∗R = {(X,Y,R) | X,Y ∈ U , R ∈ Rel(X,Y)}

∗refl(X) = (X,X,EqX) ∗src(X,Y,R) = X ∗tgt(X,Y,R) = Y

The objects of this reflexive graph are thus small sets from U , and
its relations are ordinary binary relations between such sets. For
each X ∈ U , the function ∗refl takes the equality relation to be the
distinguished binary relation on X . For this choice of relation the
identity extension property is a straightforward consequence of the
definition of a reflexive graph morphism.

Our second use of reflexive graphs takes ΓO to be a specific
set and ΓR to be a reflexive relation on that set, represented as a
(multi-)set of pairs of elements that are related. Then Γrefl ensures
that ΓR is reflexive, while Γsrc and Γtgt map each pair of related
elements to the component elements that are so related. This intu-
ition underlies the following example, which forms the basis of the
interpretation of the natural number type we present in Section 4.4.

Example 2. A reflexive graph can be built from the set of natural
numbers as follows:

natO = N
natR = N

natrefl(n) = n
natsrc(n) = n
nat tgt(n) = n

The objects of this reflexive graph are just the natural numbers.
For any n ∈ natR, we have natsrc(n) = nat tgt(n) = n, so
two natural numbers are related if and only if they are equal.
Generalising the construction of nat , for any set X there is a
reflexive graph (X,X, idX , idX , idX) that has X as its set of
objects and relates objects in X if and only if they are equal. In
particular, if 1 is a terminal object in the category of sets, then
(1, 1, id1, id1, id1) is terminal in the category of reflexive graphs.

Reflexive graphs can be equivalently defined as covariant
presheaves over the category RG = • refl // •

srcww
tgt
gg where src ◦

refl = id = tgt ◦ refl . Morphisms between reflexive graphs

are exactly natural transformations between presheaves in SetRG.
Viewing reflexive graphs as presheaves ensures that the following
well-known properties of categories of presheaves hold for cate-
gories of reflexive graphs as well. Firstly, categories of presheaves
are always cartesian, so we can use the finite product structure
to interpret kinding contexts. Secondly, categories of presheaves
are always cartesian closed, which allows for the interpretation of
higher kinds [2]. Finally, presheaf categories always form a (non-
parametric) model of dependent type theory [15], a fact that will
help us construct the parametric model we present in Section 4.

Interpretation of Types A well-kinded type Γ ` A : ∗ is inter-
preted as a reflexive graph morphism from the |Γ|-fold product of
the reflexive graph ∗ from Example 1 to ∗ itself. Just as we did
in Example 1, we identify a context with its reflexive graph inter-
pretation and use the same notation for both. Unfolding the defini-
tions shows that a reflexive graph morphism is nothing more than a
pair comprised of an underlying interpretation and a relational in-
terpretation satisfying the identity extension property, exactly as in
the two-level semantics in Section 2.1. For any reflexive graph Γ,
we think of the homset SetRG(Γ, ∗) as providing interpretations of
types over Γ.

Interpretation of Terms Just as in Section 2.1, the interpretation
of types can be extended to an interpretation of typing contexts
by tupling in the current setting. A well-kinded typing context Γ
is therefore also interpreted as an object of SetRG(Γ, ∗). In the
reflexive graph model, a well-typed term Γ; Θ ` M : A is then
interpreted, as before, as a morphism from the interpretation of
the typing context Θ to the interpretation of the type A, i.e., as
a morphism in the category SetRG(Γ, ∗):

Definition 2. Let A,B ∈ SetRG(Γ, ∗). A morphism from A to
B is a function M : ∀γo ∈ ΓO. Ao(γo) → Bo(γo) such that
for all γr ∈ ΓR, if Ar(γr) = (A1, A2, RA ⊆ A1 × A2) and
Br(γr) = (B1, B2, RB ⊆ B1 × B2) then for all (a1, a2) ∈ RA,
(M (Γsrc(γr)) a1,M (Γtgt(γr)) a2) ∈ RB . This definition makes
each homset SetRG(Γ, ∗) into a category.

Note that the fundamental theorem of logical relations stated at the
very end of Section 2.1 is identical to the condition in Definition 2,
up to the reformulation of types as reflexive graph morphisms.

3. Martin-Löf Type Theory with a Universe:
Syntax and Categorical Semantics

The reflexive graph model of parametricity we present in Section 4
is defined with respect to the specific formulation of dependent type
theory that we set out in this section. The type theory we consider
is a standard variant of Martin-Löf type theory [22] with a natural
number type nat, dependent product types Πx:A.B, and a Tarski-
style universe U closed under natural numbers and dependent prod-
ucts. Our default assumption is that the universe U is predicative,
but we will also consider an impredicative universe in order to
more closely relate our results with (impredicative) System F. Our
type theory includes β- and η-equality rules for dependent product
types, as well as β-equality rules for the natural numbers. Since our
universe is Tarski-style, we have an explicit “decoder” type former
T to take terms of type U to actual types.

The type theories we present in this section are close to the theo-
ries underlying the Agda [6] and Coq [9] systems. Our predicative
theory is close to Agda, except that we only have one inductive
type (the natural numbers), and we only have one universe, with
an explicit universe decoder. The impredicative variant is close to
the Calculus of Constructions (the theory underlying the impred-
icative variant of Coq), except with a natural number type, and an
explicit universe decoder. Our use of an explicit universe decoder

Judgement Intuitive meaning
Γ ctxt Γ is a well-formed context
Γ ` A type A is a well-formed type in the context Γ
Γ `M : A the term M has type A in the context Γ
Γ ` A = B type A and B are equal types in the context Γ
Γ `M = N : A the terms M and N are equal at the type A

in the context Γ

Figure 2. Judgement forms

is a technical device that means we do not have to deal with co-
herence issues arising from multiple typing derivations of the same
term. Moving to an implicit universe decoder with our models does
not present any problems that do not already arise when defining
models of dependent types with a universe.

3.1 Syntax and Typing
The raw contexts, types, and terms are defined as follows:

Γ ::= � | Γ, x : A
A,B,C ::= Πx:A.B | Nat | U | TM
M,N,P ::= x | λx.M |MN | ze | suM |

Nrec(x.A,Mz, x p.Ms, N) | nat | πx:M.N

We will writeA→ B for the type Πx:A.B when x does not appear
free inB, and similarly writeM → N for the term πx:M.N when
x does not appear free inN . Capture avoiding substitution of terms
for variables in pre-syntax types (A[N/x]) and terms (M [N/x]) is
defined in the usual way. In the term Nrec(x.A,Mz, x p.Ms, N),
the variable x is considered bound in A, and the variables x and p
are considered bound in Ms.

The well-formed types and well-typed terms are defined using
a collection of five mutually inductively defined judgements. The
five different judgements and their intuitive meanings are given in
Figure 2. The first three judgements define subsets of the raw syntax
that are to be considered “well-formed” under some assumptions.
The remaining two judgements define when two types or terms
are considered as equal for the purposes of the theory. The rules
generating the judgements are given in Figure 3 and type rules
for type equality judgements are given in Figure 4. The rules for
term equality judgements, that is β- and η-equality for Π-types and
β-equality for Nat are displayed in Figure 4. The type and term
equality judgements are also understood to include the reflexivity,
symmetry, transitivity and congruence rules. Note that, due to the
type former T, the congruence rules make type equality depend
on term equality. Further discussion about these rules, and close
relatives of them, can be found in Hofmann’s survey of the syntax
and semantics of dependent type theories [15].

Impredicativity The additional rules for considering an impred-
icative universe are given in Figure 5. These rules replace the rules
U-π in Figure 3 and β-U-π in Figure 4 describing the U-former
πx:M.N . Impredicativity allows the construction of types in U
(i.e., of small types) by quantification over some large type A,
which may, in fact, be U itself. We can therefore construct a uni-
verse U — for example, such that πa:U. a → a : U — that is
not permitted in the predicative theory. When U is impredicative,
our type theory is equivalent to a variant of Coquand and Huet’s
Calculus of Constructions [10].

3.2 Categories with Families
The syntax of Martin-Löf Type Theory is a complex system of
mutually inductive definitions. The mutual dependencies between
well-formed types, equality, and well-typed terms severely compli-
cate directly defining and proving sound a semantics for type the-
ory. We address this issue by formulating our reflexive graph model

Context formation (Γ ctxt)

� ctxt
(EMP)

Γ ctxt Γ ` A type
Γ, x : A ctxt

(EXT)

Type Formers (Γ ` A type)

Γ ` A type Γ, x : A ` B type
Γ ` Πx:A. B type

(TY-Π)

Γ ` Nat type
(TY-NAT)

Γ ` U type
(TY-U)

Γ `M : U

Γ ` TM type
(TY-T)

Typing Rules (Γ `M : A)

Γ, x : A,Γ′ ctxt
Γ, x : A,Γ′ ` x : A

(VAR)

Γ `M : A Γ ` A = B type
Γ `M : B

(CONV)

Γ, x : A `M : B

Γ ` λx:A.M : Πx:A.B
(LAM)

Γ `M : Πx:A.B Γ ` N : A

Γ `MN : B[N/x]
(APP)

Γ ` ze : Nat
(ZE)

Γ ` n : Nat

Γ ` su n : Nat
(SU)

Γ, x : Nat ` A type
Γ `Mz : A[ze/x]

Γ, n : Nat, p : A[n/x] `Ms : A[su n/x]
Γ ` n : Nat

Γ ` Nrec(x. A,Mz, n p. Ms, n) : A[n/x]
(NREC)

Γ ` nat : U
(U-NAT)

Γ `M : U Γ, x : TM ` N : U

Γ ` πx:M.N : U
(U-π)

Figure 3. Typing Rules of Martin-Löf Type Theory with Universe

Γ ` A type Γ, x : A `M : U

Γ ` πx:A.M : U
(U-π’)

Γ ` A type Γ, x : A `M : U

Γ ` T(πx:A. M) = Πx:A. TM type
(β-U-π’)

Figure 5. Rules for Impredicative Quantification

Type Equality Rules (Γ ` A = B type)

Γ ` T nat = Nat type
(β-U-NAT)

Γ `M : U Γ, x : TM ` N : U

Γ ` T(πx:M.N) = Πx:TM. TN type
(β-U-π)

elided: type equality is an equivalence relation and a congruence with respect to all type formers.

Term Equality Rules (Γ `M = N : A)

Γ, x : A `M : B Γ ` N : A

Γ ` (λx:A. M)N = M [N/x] : B[N/x]
(Π-β)

Γ `M : Πx:A.B

Γ ` (λx:A. Mx) = M : Πx:A.B
(Π-η)

Γ, x : Nat ` A type Γ `Mz : A[ze/x] Γ, n : Nat, p : A[n/x] `Ms : A[su n/x]

Γ ` Nrec(x.A,Mz, n p.Ms, ze) = Mz : A[ze/x]
(β-ZE)

Γ, x : Nat ` A type Γ `Mz : A[ze/x] Γ, n : Nat, p : A[n/x] `Ms : A[su n/x] Γ ` n : Nat

Γ ` Nrec(x. A,Mz, n p. Ms, su n)
= Ms[n/n,Nrec(x.A,Mz, n p.Ms, n)/p]

: P [su n/x]

(β-SU)

elided: term equality is an equivalence relation and a congruence with respect to all term formers.

Figure 4. Type and Term Equality Judgements

in terms of categories with families (CwFs), a notion originally due
to Dybjer [12]. CwFs form a sound and complete class of categori-
cal models of many variants of dependent type theory, as explained
by Hofmann [15]. Therefore, by demonstrating that the category of
reflexive graphs forms a CwF with the appropriate additional struc-
ture needed for the type formers we have chosen, we are guaranteed
to have soundly modelled the syntax of the type theory presented
in the previous section.

We present the definition of a CwF (Definition 3), and then
present the extra structure required for dependent products (Defi-
nition 4), a natural number type (Definition 5), and a universe of
small types (Definition 6). We loosely follow Hofmann’s presenta-
tion [15], except that we specialise for our particular type theory.

The Basic Structure CwFs provide enough structure to interpret
the contexts, types, and terms of a type theory, along with simulta-
neous substitutions and their action on types and terms. Judgemen-
tal equality on types and terms is modelled directly as equality in
the model; in particular, there is no semantic structure correspond-
ing to the rule CONV. Here, we define comprehension in terms of
a bijection between sets of morphisms and semantic terms. This is
equivalent to Hofmann’s definition of comprehension in terms of
projections and weakening. We treat projection and weakening as
derived structure, as described after the following definition.

Definition 3. A Category with Families (CwF) consists of:

1. A category C, whose objects are intended as the semantic inter-
pretations of contexts and whose morphisms are intended as the
interpretations of simultaneous substitutions;

2. For each Γ ∈ Ob(C), a collection Ty(Γ) of semantic types;
3. For each Γ ∈ Ob(C) and semantic type A ∈ Ty(Γ), a

collection Tm(Γ, A) of semantic terms;
4. For every morphism f : Γ→ ∆ in C, a function

−{f} : Ty(∆)→ Ty(Γ)

interpreting type substitution, and for every A ∈ Ty(∆), a
function

−{f} : Tm(∆, A)→ Tm(Γ, A{f})

interpreting term substitution, such that the following hold:

A{idΓ} = A (1)
A{f}{g} = A{f ◦ g} (2)
M{idΓ} = M (3)

M{f}{g} = M{f ◦ g} (4)

Equations 3 and 4 are well-typed by virtue of Equations 1 and
2, respectively.

5. A chosen terminal object 1 in C, interpreting the empty context;
6. For each Γ ∈ Ob(C) and A ∈ Ty(Γ) an object Γ.A ∈ Ob(C)

(called the comprehension of A) such that there is a bijection

C(∆,Γ.A) ∼= {(f,M) | f : ∆→ Γ,M ∈ Tm(∆, A{f})}

that is natural in ∆.

An alternative presentation of points (1) to (4) of Definition 3
is as a functor Cop → Fam(SET), where SET is the category of
large sets (which includes the category Set as an object).

Given f : ∆ → Γ and M ∈ Tm(∆, A{f}), we write 〈f,M〉
for the associated morphism ∆ → Γ.A in C given by the iso-
morphism in point (6) of Definition 3. Conversely, given a mor-
phism f : ∆ → Γ.A in C, we write f#1 : ∆ → Γ and
f#2 ∈ Tm(∆, A{f#1}) for the associated morphism and seman-
tic term. The following definitions derive projection and weakening
structure from Definition 3, and also define the semantic counter-
part of a simultaneous substitution of a term for a variable.

1. For any Γ ∈ Ob(C) and A ∈ Ty(Γ), the first projection
morphism pΓ

A : Γ.A → Γ is defined as pΓ
A = id#1

Γ.A. This is
used to interpret weakening by discarding a single variable.

2. For any Γ ∈ Ob(C) and A ∈ Ty(Γ), the second projection
qΓ
A ∈ Tm(Γ.A,A{pΓ

A}) is defined as qΓ
A = id#2

Γ.A. This is
used to interpret the rule VAR.

3. For any Γ,∆ ∈ Ob(C), A ∈ Ty(Γ) and morphism f : ∆ →
Γ, the weakening of f by A, wkAf : ∆.A{f} → Γ.A is
defined as wkAf = 〈f ◦ p∆

A{f}, q
∆
A{f}〉. This is used to lift

simultaneous substitutions to work in larger contexts.

4. For any Γ ∈ Ob(C), A ∈ Ty(Γ) and M ∈ Tm(Γ, A), we
define the morphism M : Γ → Γ.A as M = 〈idΓ,M〉. Mor-

phisms built from semantic terms are used to build simultane-
ous substitutions that substitute (semantic) terms for variables.

Dependent Products Hofmann’s presentation of the structure for
interpreting dependent product types in a CwF admits the possi-
bility of not supporting the η-rule. But since the type theory we
consider in this paper does include the η-rule Π-η, we can use the
following compact definition to describe the requirements ensuring
that a CwF supports dependent products.

Definition 4. A CwF C supports dependent products if for all
semantic contexts Γ ∈ Ob(C) and semantic types A ∈ Ty(Γ)
and B ∈ Ty(Γ.A) there exists a semantic type ΠAB ∈ Ty(Γ),
natural in Γ, such that there is a bijection Λ : Tm(Γ.A,B) ∼=
Tm(Γ,ΠAB), natural in Γ.

Definition 4 gives a semantic counterpart of the abstraction
rule LAM. We define the following semantic counterpart of the
application rule APP. For Γ, A and B as in Definition 4, and M ∈
Tm(Γ,ΠAB) and N ∈ Tm(Γ, A), we define AppΓ

A,B(M,N) ∈
Tm(Γ, B{N}) by AppΓ

A,B = (Λ−1(M)){N}.

The Natural Number Type The structure required to model the
type of natural numbers directly follows the syntactic structure we
presented in Section 3, modulo the more explicit presentation of
substitution inherent in the CwF formalism. The following defini-
tion gives semantic counterparts to the rules ZE, SU, and NREC.

Definition 5. A CwF C supports natural numbers if, for all Γ ∈
Ob(C), there is a semantic type NatΓ ∈ Ty(Γ) (we usually
omit the superscript Γ), semantic terms zero ∈ Tm(Γ,Nat) and
succ ∈ Tm(Γ.Nat ,Nat), and, for each A ∈ Ty(Γ.Nat), a
function on semantic terms NrecA of type Tm(Γ, A{zero}) ×
Tm(Γ.Nat .A,A{wkNat pΓ

Nat ◦succ◦pΓ.Nat
A })→ Tm(Γ.Nat , A)

such that Nat , zero, succ and Nrec are natural in Γ, and the
following two equations hold:

NrecA(Mz,Ms){zero} = Mz (5)

NrecA(Mz,Ms){wkNat p
Γ
Nat ◦ succ} = Ms{NrecA(Mz,Ms)}

(6)

Universe The CwF interpretation of the universe U is just the
translation of the syntactic structure into the CwF framework. The
following definitions are semantic counterparts to U-NAT, U-π, and
U-π’. We treat the predicative and impredicative cases separately.

Definition 6. A CwF C supports a predicative universe closed un-
der natural numbers and dependent product if (a) for all Γ ∈ Ob(C)
there exist semantic types U ∈ Ty(Γ) and T ∈ Ty(Γ.U), both
natural in Γ; (b) there exists a semantic term nat ∈ Tm(Γ,U),
natural in Γ such that T{nat} = Nat; and (c) for all M ∈
Tm(Γ,U) and N ∈ Tm(Γ.T{M},U) there exists a semantic
term πMN ∈ Tm(Γ,U), natural in Γ; such that T{πMN} =
Π(T{M})(T{N}).

Definition 7. A CwF C supports an impredicative universe closed
under natural numbers and dependent product if there are U , T ,
and nat as in Definition 6, and for all A ∈ Ty(Γ) and M ∈
Tm(Γ.A,U) there exists a semantic term πAM ∈ Tm(Γ,U),
natural in Γ, such that: T{πAM} = ΠA(T{M}).

4. The Reflexive Graph Model of Type Theory
Constructing our reflexive graph model of type theory is now a mat-
ter of showing that the category of reflexive graphs from Section 2
has the structure of a category with families. The essential tasks are
to (a) establish what a family of reflexive graphs over a reflexive
graph is, in order to model types (Sections 4.1 and 4.2); and (b) to
determine the interpretation of the universe type U (Section 4.3).

Once we have done the former, the interpretations of Π-types and
the natural number type are determined up to isomorphism (Sec-
tion 4.4). As an intuitive guide for determining the correct defini-
tion of a family of reflexive graphs, we use standard results about
fibrational models of dependent types. Knowledge of fibrations is
not required to understand our final definitions.

4.1 Families of Reflexive Graphs
A standard way to model the dependency of types on terms is
to use the families fibration p : Fam(Set) → Set, where the
category Fam(Set) has as objects pairs (X,P), where X ∈ Set
and P : X → Set, and the functor p projects out the first
element. The basic idea of the families fibration is that a pair
(X,P) represents a context X and a collection P of types indexed
by the elements of X . However, in a reflexive graph model of
parametricity we want to index not by sets, but by reflexive graphs
in SetRG. Fortunately, there is a natural way to do this. By standard
results about fibrations (see Exercise 1.8.8 in Jacobs [17]), the
functor pRG : Fam(Set)RG → SetRG, defined as pRG(F) =
p ◦ F , is also a fibration. This hints that objects of Fam(Set)RG

are the natural interpretations of dependent types in a reflexive
graph model of parametricity, and that the functor pRG should send
each such object to the reflexive graph interpreting the context over
which the type that object interprets is indexed.

Unpacking the definition of Fam(Set)RG, we see that an object
of Fam(Set)RG is equivalent to a pair (Γ, A) of a reflexive graph
Γ, together with a familyA of reflexive graphs that is over Γ, in the
following sense:

Definition 8. Let Γ be a reflexive graph. A family of reflex-
ive graphs over Γ is a 5-tuple A = (AO, AR, Arefl , Asrc , Atgt),
where:

AO : ΓO → Set
AR : ΓR → Set
Arefl : ∀γo ∈ ΓO. AO(γo)→ AR(Γrefl(γo))
Asrc : ∀γr ∈ ΓR. AR(γr)→ AO(Γsrc(γr))
Atgt : ∀γr ∈ ΓR. AR(γr)→ AO(Γtgt(γr))

such that the following equations hold:

∀γo ∈ ΓO. Asrc(Γrefl(γo)) ◦Arefl(γo) = id (7)
∀γo ∈ ΓO. Atgt(Γrefl(γo)) ◦Arefl(γo) = id (8)

Morphisms between pairs of families of reflexive graphs over
the same reflexive graph are derived from the morphisms of
Fam(Set)RG. This yields the following definition:

Definition 9. Let Γ be a reflexive graph and letA andB be families
of reflexive graphs over Γ. A morphism M from A to B consists of
a pair of functions

Mo : ∀γo ∈ ΓO. AO(γo)→ BO(γo)

Mr : ∀γr ∈ ΓR. AR(γr)→ BR(γr)

such that
∀γo ∈ Γo, ao ∈ AO(γo).

Brefl(γo)(Mo γo ao) = Mr (Γrefl(γo)) (Arefl(γo)(ao))
∀γr ∈ ΓR, ar ∈ AR(γr).

Bsrc(γr)(Mr γr ar) = Mo (Γsrc(γr)) (Asrc(γr)(ar))
∀γr ∈ ΓR, ar ∈ AR(γr).

Btgt(γr)(Mr γr ar) = Mo (Γtgt(γr)) (Atgt(γr)(ar))

Families of reflexive graphs over a reflexive graph Γ and mor-
phisms between them form a category RG-Fam(Γ).

4.2 Reflexive Graphs as a Category with Families
We define a CwF structure on the category of reflexive graphs as
follows. For each reflexive graph Γ, we define the collection of

semantic types Ty(Γ) to be the collection of families of reflexive
graphs over Γ as defined in Definition 8. Given a reflexive graph Γ
and a family A of reflexive graphs over Γ, we define the collection
of semantic terms Tm(Γ, A) to be the collection of morphisms
from the terminal family (λγo ∈ ΓO.∗, λγr ∈ ΓR.∗, λγo ∈
ΓO.id∗, λγr ∈ ΓR.id∗, λγr ∈ ΓR.id∗) of reflexive graphs over
Γ to A, as in Definition 9. Spelling this definition out, suppressing
the contribution of the terminal family, a semantic term M ∈
Tm(Γ, A) is defined as a pair of functions (Mo,Mr):

Mo : ∀γo ∈ ΓO. AO(γo) Mr : ∀γr ∈ ΓR. AR(γr)

such that

∀γo ∈ ΓO. Arefl(γo)(Mo(γo)) = Mr(Γrefl(γo)) (9)
∀γr ∈ ΓR. Asrc(γr)(Mr(γr)) = Mo(Γsrc(γr)) (10)
∀γr ∈ ΓR. Atgt(γr)(Mr(γr)) = Mo(Γtgt(γr)) (11)

For each reflexive graph morphism f : ∆→ Γ, substitution A{f}
in semantic types A and substitution M{f} in semantic terms are
both defined by pre-composition. Comprehension structure is given
by the following definition, which can be seen as the dependent
version of the cartesian product of reflexive graphs used in Section
2.2 to interpret the non-dependent kinding and typing contexts of
System F.

Definition 10. Let Γ be a reflexive graph, and let A ∈ Ty(Γ) be
a semantic type. Define the comprehension Γ.A as the following
reflexive graph:

(Γ.A)O = {(γo, ao) | γo ∈ ΓO, ao ∈ AO(γo)}
(Γ.A)R = {(γr, ar) | γr ∈ ΓR, ar ∈ AR(γr)}
(Γ.A)refl(γo, ao) = (Γrefl(γo), Arefl(γo)(ao))
(Γ.A)src(γr, ar) = (Γsrc(γr), Asrc(γr)(ar))
(Γ.A)tgt(γr, ar) = (Γtgt(γr), Atgt(γr)(ar))

Given f : ∆→ Γ and M ∈ Tm(∆, A{f}), define 〈f,M〉 : ∆→
Γ.A as follows:

〈f,M〉o(δo) = (fo(δo),Mo(fo(δo)))
〈f,M〉r(δr) = (fr(δr),Mr(fr(δr)))

Given f : ∆ → Γ.A, define f#1 : ∆ → Γ and f#2 ∈
Tm(∆, A{f#1}) as follows:

(f#1)o(δo) = let (γo, ao) = fo(δo) in γo
(f#1)r(δr) = let (γr, ar) = fr(δr) in γr
(f#2)o(δo) = let (γo, ao) = fo(δo) in ao
(f#2)r(δr) = let (γr, ar) = fr(δr) in ar

The next proposition follows by mechanical checking of the
requirements in Definition 3.

Proposition 1. The category of reflexive graphs has the structure
of a CwF, where the collection of semantic types Ty(Γ) is the
collection of families of reflexive graphs over Γ, and the collection
of semantic terms Tm(Γ, A) is the collection of morphisms from
the terminal family of reflexive graphs over Γ to A.

4.3 Interpreting the Universe of Small Types
By Definition 6, the basic structure we require to interpret the
type-theoretic universe comprises semantic types U ∈ Ty(Γ) and
T ∈ Ty(Γ.U). So T takes elements of U to semantic types. But
which semantic types (i.e., families of reflexive graphs) ought to
be elements of U? Unlike in the case of Π-types and the natural
number type, where we are constrained in our interpretation up to
isomorphism by the equations of the calculus (Section 4.4), we are
free to select any collection of semantic types, as long as it contains
the natural number type and is closed under Π-types.

Since the reflexive graph model is a covariant presheaf model
over the reflexive graph category RG (Section 2.2), a plausible

choice would be to use Hofmann and Streicher’s general defini-
tion of the interpretation of a type-theoretic universe in presheaf
models given some set-theoretic universe U [16]. Spelling out their
construction in the setting of reflexive graphs yields:

UHS
O (γo) = the set of small reflexive graphs

UHS
R (γr) = {(A,B,R ∈ U , Rsrc : R→ AO, Rtgt : R→ BO) |

A,B are small reflexive graphs}

Thus, the objects of UHS are small reflexive graphs, and the rela-
tions are spans between small reflexive graphs. As Hofmann and
Streicher show, this definition exactly captures the small families
of reflexive graphs: families of reflexive graphs where the sets of
objects and sets of relations are always taken from the universe U .
Put mathematically, if we write RG-Fams(Γ) for the subcategory
of small families of reflexive graphs over some reflexive graph Γ,
then we have Tm(Γ, UHS) ∼= Ob(RG-Fams(Γ)).

However, despite precisely capturing smallness, Hofmann and
Streicher’s universe is too big for our purposes. We want to lift
the consequences of relational parametricity from System F to
the setting of dependent types. To do this, we need to accurately
replicate the salient features of the kind ∗ of System F types in our
interpretation of the type-theoretic universe U.

Recall the definition of the reflexive graph ∗ representing the
System F kind of types from Example 1. This reflexive graph has
the following three properties, only the first of which is captured
by the Hofmann-Streicher universe. Firstly, the sets of objects and
relations are small, in the sense of belonging to the universe U
of small sets. Secondly, the reflexive structure of ∗ indicates that
the equality relation is distinguished amongst all possible binary
relations on sets; this is the essential identity extension property.
As we saw in Example 2, reflexive graphs in which only equal
objects are related can be modelled by taking the sets of objects and
relations to be equal. Thirdly, the relations between sets are proof-
irrelevant: since a relation R from X to Y is a subset of X × Y ,
and since each pair (x, y) is either in the subset or not, there is
at most one way that x and y can be related. Proof-irrelevance is
essential for reasoning using a relationally parametric model: we
use the relational level to reason about equality at the object level,
but we have nothing to reason about the relational level with, so
proof-irrelevance is needed to make sure that equality at this level
is trivial. This insight is formalised in Lemma 2 below, and heavily
used in Section 5. We note in passing that thinking along these lines
motivates the formulation of ∞-reflexive graphs (a.k.a., reflexive
globular sets), where there is always another level to reason about
the one below.

The three properties just discussed motivate this definition:

Definition 11. Let Γ be a reflexive graph. A family A of reflexive
graphs over Γ is:

1. small if, for all γo ∈ ΓO , AO(γo) ∈ U and for all γr ∈ ΓR,
AR(γr) ∈ U ;

2. discrete if, for all γo ∈ ΓO , the reflexive graph on the left of the
following diagram is isomorphic to a reflexive graph generated
by a set (on the right of the diagram):

AO(γo)
∼= //

Arefl (γo)

��

X

id

��
AR(Γrefl(γo))

∼= //

Asrc(Γrefl (γo))

==
Atgt (Γrefl (γo))

aa

X

id

<<

id

aa

3. proof-irrelevant if, for all γr ∈ ΓR, 〈Asrc(γr), Atgt(γr)〉 :
AR(γr)→ AO(Γsrc(γr))×AO(Γtgt(γr)) is injective.

We write RG-Famsdpi(Γ) for the full subcategory of RG-Fam(Γ)
consisting of small, discrete, proof-irrelevant reflexive graphs.

In parts (2) and (3) of this definition, we have chosen to enforce
the conditions of discreteness and proof-irrelevance only up to
isomorphism. This laxness will be important when showing that
the interpretation of the type-theoretic universe of small types is
closed under dependent products in Section 4.4. Definition 11 is
justified by the following representation result:

Proposition 2. Let Γ be a reflexive graph. There is an equivalence
of categories: SetRG(Γ, ∗) ' RG-Famsdpi(Γ).

Proposition 2 shows that the reflexive graph model of depen-
dent types can internally represent the semantic System F types and
terms, up to isomorphism. This suggests that we can use the reflex-
ive graph ∗ as the basis of our interpretation of U. However, the
equivalence of categories in Proposition 2 is too weak to soundly
model the type equalities we required for the universe decoder type
operator T in Figure 4 (specifically, the semantic counterparts of
these equalities in Definitions 6 and 7). We now remedy this by
refining the definition of our reflexive graph ∗ to provide an inter-
pretation for U with the required properties.

A Small, Discrete, Proof Irrelevant Universe For any reflexive
graph Γ we define semantic types U ∈ Ty(Γ) and T ∈ Ty(Γ.U):

UO(γo) = the set of small discrete reflexive graphs
UR(γr) = {(A,B,R ∈ U , Rsrc : R→ AO, Rtgt : R→ BO |

A,B are small discrete reflexive graphs,
〈Rsrc , Rtgt〉 : R→ AO ×BO is injective}

Urefl(γo)(A) = (A,A,AR, Asrc , Atgt)
Usrc(γr)(A,B,R,Rsrc , Rtgt) = A
Utgt(γr)(A,B,R,Rsrc , Rtgt) = B

If A is a discrete reflexive graph, then 〈Asrc , Atgt〉 : AR →
AO × AO is necessarily injective, so the definition of Urefl makes
sense. We define the semantic types T ∈ Ty(Γ.U) as follows:

TO(γo, A) = AO
TR(γr, (A,B,R,Rsrc , Rtgt)) = R
Trefl(γo, A) = Arefl

Tsrc(γr, (A,B,R,Rsrc , Rtgt)) = Rsrc

Ttgt(γr, (A,B,R,Rsrc , Rtgt)) = Rtgt

The definitions of U and T we have just presented fulfil part (a) of
Definition 6. The following lemma states that we have successfully
internalised the subcategories RG-Famsdpi(Γ).

Lemma 1. For any M ∈ Tm(Γ,U), the family T{M} is small,
discrete, and proof-irrelevant and this mapping forms a bijection of
sets: T{−} : Tm(Γ,U) ∼= Ob(RG-Famsdpi(Γ)), natural in Γ.

The fact that this lemma gives us a bijection is useful because
it means that to show that the universe U is closed under some
semantic type former, we need only show that the semantic type
former is closed under the condition of being a small, discrete, and
proof-irrelevant family of reflexive graphs. Below, we define the
small counterparts of dependent products and the natural number
type – parts (b) and (c) of Definition 6 – using the right-to-left
direction of this bijection to obtain a representation in U of a
small, discrete, proof-irrelevant family, which we write as repr :
Ob(RG-Famsdpi(Γ))→ Tm(Γ,U).

We note the following crucial property of proof-irrelevant fam-
ilies. By proof-irrelevance, there is exactly one way that any two
object-level elements can be related. Therefore, for any two terms
of proof-irrelevant type, if the object-level interpretations are equal
then so are the relation-level interpretations. This lemma plays
an important role in showing that the interpretation of the type-
theoretic universe we have defined is closed under dependent prod-
ucts (Lemma 3, below), and also in the applications of relational
parametricity that we describe in Section 5.

Lemma 2. Let Γ be a reflexive graph and let A ∈ Ty(Γ) be a
proof-irrelevant family of reflexive graphs. For any pair of semantic
terms M,N ∈ Tm(Γ, A), Mo = No implies Mr = Nr .

Proof. Since M and N are semantic terms, and Mo = No, we
have, for all γr ∈ ΓR, Asrc(γr)(Mr(γr)) = Mo(Γsrc(γr)) =
No(Γsrc(γr)) = Asrc(γr)(Nr(γr)). Similarly, we have
Atgt(γr)(Mr(γr)) = Atgt(γr)(Nr(γr)), for all γr ∈ ΓR. By
proof-irrelevance of A, the function 〈Asrc(γr), Atgt(γr)〉 formed
by pairing is injective, hence Mr = Nr .

4.4 Interpreting Dependent Products and Natural Numbers
To complete our reflexive graph model of type theory, it remains
to provide the interpretations of Π-types and the natural number
type. Due to the βη-rules we have chosen for Π-types we actually
have no choice, up to isomorphism, in how to interpret these types.
We spell out the details here to demonstrate the way that type
constructors are interpreted in the reflexive graph model.

Dependent Products The interpretation of Π-types directly gen-
eralises the interpretation of System F ∀-types that we presented
in Section 2.1, the additional complication coming from the fact
that we need to consider relation transformers rather than just re-
lation preservation (see also Atkey’s relationally parametric model
of System Fω [2], which also deals with relation transformers). In
the interpretation of Π-types, the object level consists of a pair of
an object-level function and a relation-level function, connected by
three coherence axioms, similar to the definition of semantic terms
in Section 4.2. The relation level consists of a pair of object-level
interpretations and a relation transformer relating them. Written out
in full, the definition is a little daunting, remember that, up to iso-
morphism, we are essentially forced into this definition.

Definition 12. Let Γ be a reflexive graph, and A ∈ Ty(Γ) and
B ∈ Ty(Γ.A) be semantic types in the reflexive graph CwF. Define
the semantic type ΠAB ∈ Ty(Γ) as follows:

(ΠAB)O(γo) =
{ (fo, fr) |

fo : ∀ao ∈ AO(γo). BO(γo, ao),
fr : ∀ar ∈ AR(Γrefl(γo)). BR(Γrefl(γo), ar),
∀ar ∈ AR(Γrefl(γo)). Bsrc(Γrefl(γo), ar)(fr ar) =

fo(Asrc(Γrefl(γo))(ar)),
∀ar ∈ AR(Γrefl(γo)). Btgt(Γrefl(γo), ar)(fr ar) =

fo(Atgt(Γrefl(γo))(ar)),
∀ao ∈ AO(γo). Brefl(γo, ao)(fo ao) = fr(Arefl(γo)(ao)) }

(ΠAB)R(γr) =
{ ((f src

o , f src
r), (f tgt

o , f tgt
r), r) |

(f src
o , f src

r) ∈ (ΠAB)O(Γsrc(γr)),
(f tgt
o , f tgt

r) ∈ (ΠAB)O(Γtgt(γr)),
r : ∀ar ∈ AR(γr). BR(γr, ar),
∀ar ∈ AR(γr). Bsrc(γr, ar)(r ar) = f src

o (Asrc(γr)(ar)),
∀ar ∈ AR(γr). Btgt(γr, ar)(r ar) = f tgt

o (Atgt(γr)(ar)) }

(ΠAB)refl(γo)(fo, fr) = ((fo, fr), (fo, fr), fr)
(ΠAB)src(γr)(f

src , f tgt , r) = f src

(ΠAB)tgt(γr)(f
src , f tgt , r) = f tgt

Given a semantic term M ∈ Tm(Γ.A,B), we define (ΛM) ∈
Tm(Γ,ΠAB) as follows:

(ΛM)o(γo) = (λao. Mo(γo, ao), λar. Mr(Γrefl(γo), ar))
(ΛM)r(γr) =

((ΛM)o(Γsrc(γr)), (ΛM)o(Γtgt(γr)), λar. Mr(γr, ar))

and, conversely, given N ∈ Tm(Γ,ΠAB) , we define (Λ−1N) ∈
Tm(Γ.A,B) as follows:

(Λ−1N)o(γo, ao) = let (fo, fr) = No(γo) in fo(ao)
(Λ−1N)r(γr, ar) = let (f src , f tgt , r) = Nr(γr) in r(ar)

Proposition 3. The reflexive graph CwF supports dependent prod-
ucts (Definition 4), using the structure defined in Definition 12.

If the familiesA ∈ Ty(Γ) andB ∈ Ty(Γ.A) are small, then so
is the family ΠAB ∈ Ty(Γ). This is a consequence of assuming
that the set-theoretic universe U is a universe of small sets, and so is
closed under dependent products and tupling. It is straightforward
to check that for closure under discreteness and proof-irrelevance,
only the family B need be discrete and proof-irrelevant:

Lemma 3. Let A ∈ Ty(Γ) and B ∈ Ty(Γ.A). If B is discrete
and proof-irrelevant, then so is ΠAB ∈ Ty(Γ).

Proposition 4. Part (c) of Definition 6 is fulfilled by the definition
πMN = repr(Π(T{M})(T{N})).

If we further assume that our collection of small sets U is
closed under large products, then we also have an interpretation
of an impredicative type-theoretic universe. By Lemma 3, only the
codomain type B need be discrete and proof-irrelevant for ΠAB
to be discrete and proof-irrelevant. Therefore, if U is closed under
large products, then U is closed under impredicative quantification.

Proposition 5. Under the assumption of an impredicative universe
U , Definition 7 is fulfilled by πAM = repr(ΠA(T{M})).

The Natural Number Type For each reflexive graph Γ, we define
a semantic type Nat ∈ Ty(Γ) as follows, reusing the definition of
the reflexive graph of natural numbers from Example 2:

NatO(γo) = N
NatR(γr) = N

Natrefl(γo)(n) = n
Natsrc(γr)(n) = n
Nat tgt(γr)(n) = n

Since the family Nat does not actually depend on its argument, this
definition is trivially natural in Γ.

The zero and successor semantic terms zero ∈ Tm(Γ,Nat)
and succ ∈ Tm(Γ.Nat ,Nat) are defined using the corresponding
structure of the natural numbers:

zeroo(γo) = 0 succo(γo, n) = n+ 1
zeror(γr) = 0 succr(γr, n) = n+ 1

It is almost immediate that these are well-defined semantic terms,
given the trivial structure of the semantic type Nat . Likewise,
naturality in Γ is trivial.

The natural number recursor Nrec is given, forA ∈ Ty(Γ.Nat),
Mz ∈ Tm(Γ, A{zero}), andMs ∈ Tm(Γ.Nat .A,A{wkNat pΓ

Nat◦
succ ◦ pΓ.Nat

A }), by recursion on the natural number argument:

(NrecA(Mz,Ms))o(γo, 0) = Mz
o (γo)

(NrecA(Mz,Ms))r(γr, 0) = Mz
r (γr)

(NrecA(Mz,Ms))o(γo, n+ 1) =
Ms
o (γo, n, (NrecA(Mz,Ms))o(γo, n))

(NrecA(Mz,Ms))r(γr, n+ 1) =
Ms
r (γr, n, (NrecA(Mz,Ms))r(γr, n))

Equations (5) and (6) specifying the interaction between Nrec and
zero and succ hold almost by definition. Naturality in Γ is proved
by induction on the natural number argument.

Proposition 6. The CwF formed from the category of reflexive
graphs supports natural numbers (Definition 5). Moreover, the fam-
ilies Nat ∈ Ty(Γ) are small, discrete and proof irrelevant, so part
(b) of Definition 6 is fulfilled by nat = repr(Nat).

4.5 Main Theorem
By the results of the preceding subsections, we have shown that:

Theorem 1. The category of reflexive graphs can be given the
structure of a CwF that supports dependent products and natural
numbers. Assuming the existence of a universe U of small sets, the
category of reflexive graphs supports a predicative universe closed
under natural numbers and dependent products, and if U is closed
under large products then the CwF supports an impredicative uni-
verse closed under natural numbers and dependent products.

As we argued in the paragraph before Definition 11, our inter-
pretation of the type-theoretic universe U supports the identity ex-
tension property we identified in Section 2.1 as crucial for relation-
ally parametric models. Thus, we are justified in referring to the
model we have constructed here as relationally parametric.

5. Consequences of Parametricity
Having built our parametric model of dependent type theory, we
now investigate some of the consequences of our construction. Our
careful construction of the interpretation of the type-theoretic uni-
verse U as capturing the small, discrete, and proof-irrelevant fam-
ilies now bears fruit: we recover many of the interesting conse-
quences of relationally parametricity that have been observed in
the non-dependently typed settings of System F and System Fω.

As a practical matter, calculating directly within the model we
have constructed in the previous section is complicated by the
“projection-based” presentation of relational interpretations forced
by the reflexive graph formalism. We therefore use the following
notational shorthands when reasoning within the model:

1. If A ∈ Ty(Γ) is a proof-irrelevant family of reflexive graphs,
we write (a, a′) ∈ AR(γr) if there exists ar ∈ AR(γr) such
that Asrc(γr)(ar) = a and Asrc(γr)(ar) = a′. By proof-
irrelevance the pair (a, a′) completely determines ar if it exists.

2. If f ∈ (ΠAB)O(γo), we identify f with its first component, so
we can treat it as a function ∀ao ∈ AO(γo). BO(γo, ao). Sim-
ilarly, if f ∈ (ΠAB)R(γr) we identify f with its relation trans-
former component, which has type ∀ar ∈ AR(γr). BR(γr, ar).

3. We will be liberal in confusing the curried and uncurried ver-
sions of the semantic interpretations of inhabitants of dependent
products. This decreases the number of parentheses required.

We first prove a simple free theorem, in order to demonstrate
reasoning within the model, and the utility of the construction of
our interpretation of the type-theoretic universe as only containing
proof-irrelevant families. We then go on to adapt Atkey’s proof of
the existence of higher-kinded initial algebras [2] to the impred-
icative dependently typed setting. This proof also relies on proof-
irrelevance, and also makes essential use of the discreteness of
members of U in Lemma 7.

5.1 A Free Theorem
We begin by proving a simple free theorem in the style of Wadler
[35]. This example shows that the ordinary consequences of rela-
tional parametricity are preserved when moving from polymorphic
calculi to the richer world of dependent type theory with a universe.

Theorem 2. If Γ ` M : Πa : U. Ta → Ta then, for any
Γ ` X : U, Γ ` Y : U, Γ ` f : TX → TY , and Γ ` x : TX ,
the equation Γ ` f (M X x) = M Y (f x) : TY is sound when
interpreted in the models constructed in Section 4.

Proof. Unwinding the definitions, we see that we must establish
the following two equations, in which we have reused the letters Γ,
M , X , Y , f and x to stand for the semantic interpretations of the

corresponding syntactic objects, we have applied currying where
convenient, and we have identified the small types X and Y with
their decodings via T:

∀γo ∈ ΓO. fo(γo,Mo(γo, Xo(γo), xo(γo))) =
Mo(γo, Yo(γo), fo(γo, xo(γo)))

∀γr ∈ ΓR. fr(γr,Mr(γr, Xr(γr), xr(γr))) =
Mr(γr, Yr(γr), fr(γr, xr(γr)))

The interpretation of the type TY is a proof-irrelevant family, so
by Lemma 2 we only need to prove the first of the above equations,
from which the second necessarily follows. For a given γo, we use
the relational interpretation Mr of M , instantiated at Γrefl(γo):

Mr(Γrefl(γo),−,−) :
∀R ∈ UR(Γrefl(γo)). TR(Γrefl(γo), R)→ TR(Γrefl(γo), R)

Again unwinding the definitions, and using the fact that Mr is con-
nected to Mo via the equations for sources and targets of relations
in (10) and (11), we have the following property:

∀A,A′ ∈ UO(γo), R ⊆ AO ×A′O, (a, a′) ∈ R.
(Mo(γo, A, a),Mo(γo, A

′, a′)) ∈ R

We instantiate A and A′ with the small discrete reflexive graphs X
and Y , respectively, at γo. We take R = {(x, y) | fo(γo, x) = y}.
Then (xo(γo), fo(γo, xo(γo))) ∈ R, so (Mo(γo, XO(γo), xo(γo)),
Mo(γo, YO(γo), fo(γo, xo(γo)))) ∈ R, and the desired equation
holds thus by definition of R.

5.2 Categories of Indexed Types and Indexed Functors
We now start on our proof that the relationally parametric model
that we have constructed supports initial algebras for all indexed
functors. To this end, we first define the appropriate category of
indexed small types where the carriers of indexed initial algebras
reside. The construction of our category of indexed small types is
carried out with respect to some fixed context Γ. For each judge-
ment Γ ` X type, we define the category ofX-indexed small types
to have as objects terms Γ ` A : X → U, and define morphisms
between objects Γ ` A : X → U and Γ ` B : X → U to be terms
Γ ` f : Πx:X. T(A x)→ T(B x). Identities and composition are
defined in the obvious way. Composition is associative due to the
η-rule for dependent products.

We write A ⇒ B to stand for the type Πx:X. T(A x) →
T(B x). We will also use the type Γ, a : X → U, b : X →
U ` Πx:X. T(a x) → T(b x) type, i.e., the type of mor-
phisms where the domain and codomain are abstracted as vari-
ables. As a notational convenience, we write “morph” as short-
hand for this type, and similarly for its semantic interpretation
morph ∈ Ty(Γ.ΠXU.ΠXU).

Morphisms in the category ofX-indexed small types induce re-
lations between their domain and codomain objects, as given by the
following definition. This definition is the X-indexed generalisa-
tion of the functional relation from the free theorem in Section 5.1.

Definition 13. Let Γ ` A : X → U and Γ ` B : X → U. Given a
morphism Γ ` f : A⇒ B, we define 〈f〉, called the graph relation
of f , to be the following element of (ΠXU)R:

λγr ∈ ΓR. (Ao(Γsrc(γr)), Bo(Γtgt(γr)),
λxr ∈ XR(γr).

(Ao(Γsrc(γr))(Xsrc(γr)(xr)),
Bo(Γtgt(γr))(Xtgt(γr)(xr)),
{(a, b) | (fo(Γsrc(γr), Xsrc(γr)(xr), a), b) ∈

Br(γr)(xr)}))

The following lemma is a direct consequence of Definition 13.

Lemma 4. Let Γ ` A : X → U, Γ ` B : X → U, and
Γ ` f : A ⇒ B. Then for all γo ∈ ΓO , (fo(γo), id) ∈
morphR(Γrefl(γo), 〈f〉(Γrefl(γo)), Br(Γrefl(γo))).

Indexed Functors X-indexed initial algebras are defined in terms
of X-indexed functors, which we now define. An X-indexed func-
tor is a pair (F,Fmap) of terms

Γ ` F : (X → U)→ (X → U)
Γ ` Fmap : ΠA,B:X → U. (A⇒ B)→ (FA⇒ FB)

where Fmap preserves the identities and composition of the cate-
gory of X-indexed small types when interpretated in the reflexive
graph model. Indexed functors interact nicely with graph relations,
as captured by the following Graph Lemma:

Lemma 5. Let Γ ` f : A ⇒ B. For all γo ∈ ΓO and xr ∈
XR(Γrefl(γo)), if (a, b) ∈ Fr(Γrefl(γo), 〈f〉(Γrefl(γo)))(xr) then
(a, b) ∈ 〈Fmap A B f〉(Γrefl(γo))(xr).

5.3 The Category of F -algebras
For an X-indexed functor (F,Fmap), initial F -algebras are initial
objects in the category of F -algebras, which we now define. Fix
an X-indexed functor (F,Fmap). The objects of the category of
F -algebras are pairs of terms (A, kA) where Γ ` A : X → U and
Γ ` kA : FA ⇒ A. Morphisms between (A, kA) and (B, kB)
are terms Γ ` h : A ⇒ B such that, if ◦ is the composition of the
category of X-indexed small types, then

Γ ` kB ◦ Fmap A B h = h ◦ kA : FA⇒ B

An initial F -algebra is an initial object in the category of F -
algebras, i.e., an F -algebra (µF, in) such that there exists a term

Γ ` fold : ΠA : X → U. (FA⇒ A)→ (µF ⇒ A)

such that the following two equations hold. The first equation states
that fold always yields F -algebra morphisms:

Γ ` A : X → U

Γ ` kA : FA⇒ A Γ ` x : X Γ `M : T(µF x)

Γ ` fold A kA x (in x M) =

kA x (Fmap µF A (fold A kA) x M : T(A x)

The second equation states that theF -algebra morphisms generated
by fold are unique, as required by initiality:

Γ ` A : X → U Γ ` kA : FA⇒ A
Γ ` h : µF ⇒ A h is an F -algebra morphism

Γ ` h = fold A kA : µF ⇒ A

Morphisms between F -algebras have the following relational
property in terms of their graph relations. This property will be
useful when we prove that initial F -algebras always exist.

Lemma 6. Let (A, kA) and (B, kB) be F -algebras. If h is an F -
algebra morphism from (A, kA) to (B, kB), then for all γo ∈ ΓO ,

(kAo (γo), k
B
o (γo)) ∈

morphR(Γrefl(γo), Fr(Γrefl(γo), 〈h〉(Γrefl(γo))), 〈h〉(Γrefl(γo)))

5.4 Construction of Initial F -algebras
Having defined all the necessary background, we now show
that, within the impredicative version of our relationally para-
metric model of dependent types, initial F -algebras exist for
all X-indexed functors (F,Fmap). Given an X-indexed functor

(F,Fmap), we make the following definitions:

µF = λx : X. ΠA : X → U. (FA⇒ A)→ T(A x)

fold = λA:X → U. λkA:(FA⇒ A). λx:X. λe:T(µF x). e A kA

in = λx : X. λe : T(F (µF)x). λA : X → U. λkA : (FA⇒ A).
kA x (Fmap µF A (fold A kA) x e)

Note that, up to notational changes induced by our presentation of
the universe U, and the more general setting, these definitions are
identical to those given by Atkey [2] for constructing higher-kinded
initial algebras in a relationally parametric model of System Fω.

The proof that these definitions actually give an initial F -
algebra follows from two applications of the following lemma:

Lemma 7. The following equation holds when interpreted in the
reflexive graph model:

Γ ` A : X → U Γ ` kA : FA⇒ A

Γ ` B : X → U Γ ` kB : FB ⇒ B
Γ ` h : A⇒ B h is an F -algebra homomorphism

Γ ` x : X Γ `M : T(µF x)

Γ ` h x (M A kA) = M B kB : T(B x)

Proof. By Lemma 2 we need only prove the object-level part of the
equation. Given γo ∈ ΓO , we instantiate Mr with Γrefl(γo), the
graph relation 〈h〉(Γrefl(γo)), and the pair (kAo (γo), k

B
o (γo)), by

Lemma 6, to obtain

(Mo(γo, Ao(γo), k
A
o (γo)),Mo(γo, Bo(γo), k

B
o (γo))) ∈

〈h〉(Γrefl(γo))(Xrefl(γo)(xo(γo)))

Unfolding the graph relation, this statement is equivalent to:

(ho(γo, xo(γo),Mo(γo, Ao(γo), k
A
o (γo))),Mo(γo, Bo(γo), k

B
o (γo)))

∈ Br(Γrefl(γo), Xrefl(γo)(xo(γo)))

Now, by the identity extension property that is built into the reflex-
ive graph model, the relation Br(Γrefl(γo), Xrefl(γo)(xo(γo))) is
equal toUrefl(γo, xo(γo))(Bo(γo, xo(γo))). By the discreteness of
elements of the universe U , this relation is, up to isomorphism, the
equality relation on the small set Bo(γo, xo(γo)). We thus have

ho(γo, xo(γo),Mo(γo, Ao(γo), k
A
o (γo)))

= Mo(γo, Bo(γo), k
B
o (γo))

We can now state the following key property of our model.

Theorem 3. Any X-indexed functor (F,Fmap) has an initial F -
algebra.

Proof. We must verify that the two equations in Section 5.3 hold.
The first equation, stating that fold always generates F -algebra
morphisms, follows directly by using the β-reduction rules of the
type theory. The second equation requires relational parametric-
ity. Expanding the definitions, we see that we need to prove that
h x M = M A kA. By Lemma 7, together with the fact that h is
an F -algebra morphism, we have that h x (M µF in) = M A kA.
Using Lemma 7 again, this time with an arbitrary F -algebra
(B, kB), and setting h = fold B kB yields M µF in B kB =
M B kB . Extensionality therefore gives M µF in = M , and thus
h x M = M A kA, as required.

Despite the considerably more general setting, the above proof
is almost identical to that given by Atkey for higher-kinded initial
algebras in a relationally parametric model of System Fω. The
proofs of other results presented by Atkey — e.g., the existence
of an extensional equality type and existentials — also translate to
the impredicative dependently typed setting with little change.

6. Conclusion and Directions for Future Work
We have presented a parametric model of dependent types that
has two significant features. First, our model is based on reflexive
graphs, which naturally generalise existing relationally parametric
models of System F: just as the construction of a parametric model
for System F can be seen as moving from a model based on Set
to a model based on SetRG, so our parametric model of dependent
types can be seen as moving from a fibration p : Fam(Set)→ Set
to a fibration pRG : Fam(Set)RG → SetRG. Second, our model
supports the derivation of key results, such as the existence of initial
algebras. We believe ours is the first parametric model, syntactic or
semantic, to establish the dependently-typed generalisation of this
key property of relationally parametric models of System F.

The most exciting avenue for future work is in comparing the
reflexive graph model we have presented here with the strikingly
similar groupoid and∞-groupoid models of type theory [32]. Re-
flexive graphs can be seen as “categories without composition”,
whereas groupoids are categories with inverses. In light of the many
useful results derivable from relational parametricity, further in-
vestigation of the reduced amount of structure of reflexive graphs
looks promising (Robinson has already investigated “Parametric-
ity as Isomorphism”: parametricity where types are interpreted as
groupoids [29]). In particular, Voevodsky’s univalence axiom states
that isomorphic types are actually equal. But Reynolds’ relational
parametricity reveals that often types need only be related, not iso-
morphic, for them to be indistinguishable to programs. Is there a
Reynoldsian version of univalence waiting to be formulated?

References
[1] R. Atkey. A Deep Embedding of Parametric Polymorphism in Coq.

Proc., Workshop on Mechanising Metatheory, 2009.

[2] R. Atkey. Relational Parametricity for Higher Kinds. Proc., Computer
Science Logic, pp. 46–61, 2012.

[3] R. Atkey, P. Johann, and A. Kennedy. Abstraction and Invariance
for Algebraically Indexed Types. Proc., Principles of Programming
Languages, pp. 87–100, 2013.

[4] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial
Polymorphism. Theoretical Computer Science 70(1), pp. 35–64, 1990.

[5] J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for Free - Para-
metricity for Dependent Types. Journal of Functional Programming
22(2), pp. 107–152, 2012.

[6] A. Bove, P. Dybjer, and U. Norell. A Brief Overview of Agda – A
Functional Language with Dependent Types. Proc., Theorem Proving
in Higher Order Logics, 2009.

[7] J. Cheney and R. Hinze. A lightweight implementation of generics and
dynamics. Proc., Workshop on Haskell, pp. 90–104, 2002.

[8] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. Proc., International Conference on Functional Program-
ming, pp. 143–156, 2008.

[9] The Coq Development Team. The Coq proof assistant reference man-
ual. LogiCal Project, Version 8.0, 2004.

[10] T. Coquand and G. P. Huet. The Calculus of Constructions. Informa-
tion and Computation 76(2/3), pp. 95–120, 1988.

[11] B. Dunphy and U. S. Reddy. Parametric Limits. Proc., Logic in Com-
puter Science, pp. 242–251, 2004.

[12] P. Dybjer. Internal Type Theory. Proc., Types for Proofs and Programs,
pp. 120–134, 1996.

[13] R. Hasegawa. Categorical Data Types in Parametric Polymorphism.
Mathematical Structures in Computer Science 4(1), pp. 71–109, 1994.

[14] R. Hasegawa. Relational Limits in General Polymorphism. Publica-
tions of the Research Institute for Mathematical Sciences 30, pp. 535–
576, 1994.

[15] M. Hofmann. Syntax and Semantics of Dependent Types. In Semantics
and Logics of Computation, Cambridge University Press, pp. 79–130,
1997.

[16] M. Hofmann and T. Streicher. Lifting Grothendieck Universes. Un-
published manuscript. 199?

[17] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
[18] P. Johann. Short Cut Fusion: Proved and Improved. Proc., Semantics,

Application, and Implementation of Program Generation, pp. 47–71,
2001.

[19] N. Krishnaswami and D. Dreyer. Internalizing Relational Parametric-
ity in the Extensional Calculus of Constructions. Proc., Computer Sci-
ence Logic, 2013.

[20] S. Mac Lane. Categories for the Working Mathematician, Second
Edition. Springer-Verlag, 1998.

[21] H. G. Mairson. Outline of a Proof Theory of Parametricity. Proc.,
Functional Programming Languages and Computer Architecture, pp.
313–327, 1991.

[22] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[23] A. Nanevski, A. Banerjee, D. Garg. Dependent Type Theory for Veri-

fication of Information Flow and Access Control Policies. ACM Trans-
actions on Programming Languages and Systems 35(2), pp. 6:1–6:41,
2013.

[24] A. M. Pitts. Parametric Polymorphism and Operational Equivalence.
Mathematical Structures in Computer Science 10, pp. 321–359, 2000.

[25] G. D. Plotkin. Lambda Definability and Logical Relations. Technical
Report, University of Edinburgh, 1973.

[26] G. D. Plotkin and M. Abadi. A Logic for Parametric Polymorphism.
Proc., Typed Lambda Calculi and Applications, pp. 361–375, 1993.

[27] J. C. Reynolds. Polymorphism is Not Set-Theoretic. Proc., Semantics
of Data Types, pp. 145–156, 1984.

[28] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism.
Information Processing 83, pp. 513–523, 1983.

[29] E. Robinson. Parametricity as Isomorphism. Theoretical Computer
Science 136, pp. 163–181, 1994.

[30] E. Robinson and G. Rosolini. Reflexive Graphs and Parametric Poly-
morphism. Proc., Logic in Computer Science, pp. 364–371, 1994.

[31] I. Takeuti. The Theory of Parametricity in the Lambda Cube. Technical
Report 1217, Kyoto University, 2001.

[32] The Univalent Foundations Program. Homotopy Type Theory. Institute
for Advanced Study, 2013.

[33] D. Vytiniotis and S. Weirich Parametricity, Type Equality, and Higher-
Order Polymorphism. Journal of Functional Programming 20(2), pp.
175–201, 2010.

[34] P. Wadler. The Girard-Reynolds Isomorphism (second edition). Theo-
retical Computer Science 375(1-3), pp. 201–226, 2007.

[35] P. Wadler. Theorems for Free! Proc., Functional Programming Lan-
guages and Computer Architecture, pp. 347–359, 1989.

