Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A relationally parametric model of dependent type theory

Atkey, Robert and Ghani, Neil and Johann, Patricia (2014) A relationally parametric model of dependent type theory. In: POPL '14 Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, New York, NY., pp. 503-515. ISBN 9781450325448

Full text not available in this repository. Request a copy from the Strathclyde author


Reynolds' theory of relational parametricity captures the invariance of polymorphically typed programs under change of data representation. Reynolds' original work exploited the typing discipline of the polymorphically typed lambda-calculus System F, but there is now considerable interest in extending relational parametricity to type systems that are richer and more expressive than that of System F. This paper constructs parametric models of predicative and impredicative dependent type theory. The significance of our models is twofold. Firstly, in the impredicative variant we are able to deduce the existence of initial algebras for all indexed=functors. To our knowledge, ours is the first account of parametricity for dependent types that is able to lift the useful deduction of the existence of initial algebras in parametric models of System F to the dependently typed setting. Secondly, our models offer conceptual clarity by uniformly expressing relational parametricity for dependent types in terms of reflexive graphs, which allows us to unify the interpretations of types and kinds, instead of taking the relational interpretation of types as a primitive notion. Expressing our model in terms of reflexive graphs ensures that it has canonical choices for the interpretations of the standard type constructors of dependent type theory, except for the interpretation of the universe of small types, where we formulate a refined interpretation tailored for relational parametricity. Moreover, our reflexive graph model opens the door to generalisations of relational parametricity, for example to higher-dimensional relational parametricity.