Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints

Abid, Muhammad and Qarni, Muhammad Jawad (2009) 3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints. Turkish Journal of Engineering and Environmental Sciences, 33. pp. 281-293. ISSN 1300-0160

Text (3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints)
2009_Turkish_J_3D_thermal_finite_element_analysis_of_single_pass_girth_welded_low_carbon_steel_pipe_flange_joints.pdf - Final Published Version

Download (1MB) | Preview


This paper presents a detailed computational procedure for predicting the complete thermal history including transient temperature distribution during girth welding and subsequent post weld cooling of low carbon steel pipe flange joints. Using the FE code ABAQUS, 3-dimensional non-linear heat transfer analysis is carried out to simulate gas metal arc welding (GMAW) process. ANSI Class #300 flange is used with a 6 mm thick, 200 mm long and 100 mm nominal diameter pipe. Joint type is a single ‘V-groove’ butt joint with a 1.2 mm root opening. FORTRAN subroutine is utilized for the application of volumetric heat flux from the weld torch using Goldak’s double ellipsoidal heat source model, which is based on Gaussian power density distribution. Temperature dependent thermal properties as well as phase change effects have also been accounted. Apart from comprehensive discussion on the thermal history, in-depth analysis of the axial temperature profile at four different sections on both sides of the weld joint is presented. The simulated results showed that the temperature distribution around the implemented heat source model is steady when the weld torch moves around the circumferential joint. The present simulation model can be used as a proper tool to investigate the effect of different GMAW process parameters.