Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints

Abid, Muhammad and Qarni, Muhammad Jawad (2009) 3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints. Turkish Journal of Engineering and Environmental Sciences, 33. pp. 281-293. ISSN 1300-0160

[img]
Preview
Text (3D thermal finite element analysis of single pass girth welded low carbon steel pipe-flange joints)
2009_Turkish_J_3D_thermal_finite_element_analysis_of_single_pass_girth_welded_low_carbon_steel_pipe_flange_joints.pdf
Final Published Version

Download (1MB) | Preview

Abstract

This paper presents a detailed computational procedure for predicting the complete thermal history including transient temperature distribution during girth welding and subsequent post weld cooling of low carbon steel pipe flange joints. Using the FE code ABAQUS, 3-dimensional non-linear heat transfer analysis is carried out to simulate gas metal arc welding (GMAW) process. ANSI Class #300 flange is used with a 6 mm thick, 200 mm long and 100 mm nominal diameter pipe. Joint type is a single ‘V-groove’ butt joint with a 1.2 mm root opening. FORTRAN subroutine is utilized for the application of volumetric heat flux from the weld torch using Goldak’s double ellipsoidal heat source model, which is based on Gaussian power density distribution. Temperature dependent thermal properties as well as phase change effects have also been accounted. Apart from comprehensive discussion on the thermal history, in-depth analysis of the axial temperature profile at four different sections on both sides of the weld joint is presented. The simulated results showed that the temperature distribution around the implemented heat source model is steady when the weld torch moves around the circumferential joint. The present simulation model can be used as a proper tool to investigate the effect of different GMAW process parameters.