Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Thermal feedback identification in a mobile environment

Wilson, Graham and Brewster, Stephen and Halvey, Martin and Hughes, Stephen (2013) Thermal feedback identification in a mobile environment. In: Haptic and Audio Interface Design. Lecture Notes in Computer Science . Springer Berlin/Heidelberg, Heidelberg, pp. 10-19. ISBN 9783642410673

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Audio and vibrotactile feedback are not always suitable or desirable, as noise and/or movement may mask them, and so thermal feedback may provide a salient alternative. In this paper, the identification of 'thermal icons' (structured thermal feedback) was tested as a means of conveying information when users were sitting and walking in an outdoor location. Overall identification rate for thermal icons was 64.6%, but identification of individual parameters was promising, at 94% accuracy for direction of thermal change (warming/cooling) and 73.1% accuracy for subjective intensity (moderate/strong). Results showed that walking outdoors did not significantly worsen icon identification compared to sitting outdoors, but the environmental temperature had a strong influence. Recommendations are given on how better to design and adapt thermal feedback for use in outdoor mobile scenarios.