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ABSTRACT

The paper describes methods for balculating most likely values of 1link
flows in networks with incomplete data. The object is to present a
thorough and rigorous treatment of maximum entropy flow estimation
methods and to develop a methodological framework capable of handling
different types of network problems. A multiple probability ‘space
constrained entropy approach 1is described for fhe general network
problem. Results are presented and discussed for an example network

intended for water supply.
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INTRODUCTION

The work described in this paper 1is concerned with methods for
probabilistic inference on networks with incomplete data. It was
initially stimulated by the problem shown in Figure 1. Suppose that a
pipe network transports water from several source nodes to.several demand
nodes and that volumetric supplies and demands at all nodes can be
measured and are therefore known. Suppose also that the layout of the
pipe network énd the flow direction in each pipe element are known but no
other data whatsoever are available. Under these conditions, how can

‘most likely' flow rates in all the pipes of the network be estimated?



If the layout of pipes in Figure 1 had been a branched system with
no loops the supply and demand data would have been sufficient to
determine uniquely all the unknown internal flow rates in the pipes.
Since the layout in Figure 1 is looped, however, there are more unknowns
than equilibrium equations and more information is needed about all the
pipes in order to carry out a full looped pipe network analysis. 1In the
absence of this information there are very many possible pipe flow rate
distributions which satisfy the equilibrium conditions. Which of these
many possible solutions is in some sense most likely and how can it be

found?

The problem has practical relevance. Sometimes, especially for old
water supply systems, though plan layouts may be available, details of
the pipe diameters, friction coefficients and other data may have been
lost or may have changed over time. Such water supply networks are
usually buried and it may be time consuming and expensive to obtain these
data for every pipe element in order to determine the flow rates
accurately by calculation. Physical measurements of pipe flow rates
requires equipment and can be similarly expensive and time consuming. In
these circumstances a method of quickly estimating most likely pipe flow

rates would be most useful.

Reduced to its essentials, this problem can be viewed as a
transportation problem. There 1is a set of sources and a set of
destinations each supplying or demanding known quantities of flow.
Between these two sets of nodes there is some network providing the means
of flow transport, It is desired to estimate the most likely internal

distribution of flows within this transportation network.

Other problems with these  characteristics arise in different
practical contexts. For example, consider the well known problem in
traffic engineering of estimating the turning flows at a junction or
roundabout. Figure 2a shows a roundabout with four arms, each being a
two-way road. Suppose that traffic flow rates can be measured on each
arm in each direction thus giving four inflows to and four outflows from

the roundabout. On entering the roundabout on any arm each wvehicle



either turns left and leaves by the first exit, or goes straight on and
leaves by the second exit, or turns right and leaves by the third exit.
The possibility that a driver may make a complete circle and leave bylhis
entrance road is ignored here although this may be included if special
circumstances make this significant. For a four arm roundabout and three
possible directional choices for a vehicle on any arm, there are
therefore twelve unknown turning flows but only seven independent inflow
and outflow conditions which they must satisfy. The number of possible
solutions is infinite. How can most likely values be estimated for all

the twelve unknown turning flows?

Figure 2b shows a network representation of the turning flow problem
in which the four inflows to the roundabout are shown on the left and the
four outflows on the right. Each link of the network represents a
possible turning flow whose most likely numerical value must be found.
Although the network df Figure 2b is different from that of Figure 1 the

nature of the two estimation problems is closely similar in both cases,

The practical problems outlined above, and others, are closely
related. Methods already exist! 23 for solving some of the problems but
are incapable of solving more general network problems. The purpose of
this paper is to address them in a unified fashion to try to determine a
rigorous method capable of tackling all of them. Also there are
different interpretations of the term 'most likely’ in a flow distribu-
tion context. One purpose of this paper is to attempt to clarify tﬁat
issue. It is shown that the Shannon/Jaynes maximum entropy formalism*:S>
provides both an interpretation of ’‘most likely’ and a methodology for

determining most likely flows.
UNCERTAINTY AND NETWORK FLOWS

The term 'most likely’' used with reference to flow rate estimation
reflects likelihood in the context of observer uncertainty. In the case
of the buried water supply network, when the system 1is operating and
exhibiting the known inflow and outflow rates, the individual pipes have
unique water flow rates which obey known physical laws. Although those

physical laws are known there is insufficient data to allow the behaviour



of the system to be calculated from them. The uncertainty in the problem
.arises not from any randomness or uncertainty in the system itself but
from the inability of the observer to deduce its deterministic behaviour.
Given sufficient further data, that observer uncertainty could be
entirely eliminated and the unique pattern of flows would be revealed. If
a method exists whereby some estimate of that flow pattern can be made
without extra data, it therefore follows that the method must in some way
depend upon and manipulate the observer uncertainty about the physical
problem rather than operate methodologically upon the physical processes

of the network itself.

The roundabout problem is rather different. Here there are no
physical 1laws governing turning flows. Individual drivers are free to
make a choice of turning direction so there is inherent uncertainty in
the turning flows themselves. At best, given any amount of extra data, a
model of the roundabout system would only be able to estimate some
statistical average values for turning flows. Additionally, as with the
water supply system, there is observer uncertainty about what any average
turning flow rate is. In this paper the 'most likely' estimation process
operates upon the observer uncertainty rather than upon the uncertainties

in the turning flows themselves.

Figure 3 shows a simplified network which incorporates some, but not
all, the characteristic features of the examples described above. In
Figure 3 the nature of the flow is not specified; it may be water,
vehicles or any unspecified commodity. Let there be M source or supply
nodes denoted by i = 1;...,M and let I, be the (known) inflow at source
node i, Let there be N demand or destination nodes denoted by j =
M+1,...,M+N and let Oy+; be the (known) outflow rate at demand node Ts
Also let there be a total of L direct flow-transporting links ij between
source nodes i and demand nodes j, and let t ] denote the (unknown) flow
rate on link ij. Note that the above definitions imply that a node in
the network must be either a source or a destination node, theye are no
other possibilities. Also, the total number of links L may generally be

smaller than, and cannot exceed, MN. The network can be described as



fully-connected if each source node is directly connected to every demand
node, in which case the number of links L = MN. With these definitions

the following equations represent flow equilibrium at all nodes of the

network.
M+N
= ty, = I, I =1,...:M (1)
j=M+1
M
= t, = Oj j = M+1l,...,M+N (2)
i=1
with £, =20 vV ij

For a balanced problem, in which the sum of all source flows is
exactly equal to the sum of all flow demands, Eqs. (1) and (2) are not
linearly independent; they contain one redundant equation. Without loss
of generality it is assumed that the final demand equation at node j =
M+N 1is omitted. Eqs. (1) and (2) therefore comprise (M + N - 1)
equations in L unknown link flows. For the purposes of this paper it is
assumed that L > (M + N - 1), thus a unique solution of Eqs. (1) and (2)
does not exist; many different solutions are possible. Values are sought
for the L link flows tij satisfying Eqs. (1) and (2) which are in some

sense most likely.

One solution can be found easily if sufficient of the link flows are
set to zero until Egs. (1) and (2) become solveable uniquely for the
remaining link flows. This type of result is typically achieved by

linear programming if a linear total transportation cost function

Minimize : Cost = .? Cisti; (3)
t; ij
is added to Egqs. (1) and (2). In Eq. (3) ¢;; represents the cost of
transporting one unit of flow along link ij. Linear programming simply

allocates zero flow along the more expensive links and uses only the
cheaper links to carry non-zero flows. However, none of the problems

described above is necessarily of this nature; there is no information to



the effect that cost minimization is involved in them, and no data values
for the unit cost coefficients. Consequently there are no grounds for
expecting the most 1likely solution of Egs. (1) and (2) to have this

characteristic pattern.

Indeed, the LP-type solution is a very poor candidate for the title
of 'most likely’. Given that possible links exist to carry flow it seems
very unlikely that some of them should carry zero flow. The value zero
is at one extreme end of the range of possible values for a link flow: it
seems intuitively more likely that link flows should have values in the
middle of the range rather than at either extreme. Another argument
against zero being a most likely value for some link flows comes from the
fact that only some, but not all, of the links may have this value. Which
links should then be specifically selected to have this zero value rather
than any other links? There is no reason to prefer any particular link
to have this honour rather than any other link. Extrapolating this
argument further, there is no reason to allocate different values to the
flow rates in different links unless the equilibrium equations (1) and
(2) dictate such a solution. By this reasoning, a most likely set of

link flows should be as uniform in value as is permitted by Egqs. (1) and

(2).

This characterization of most likely values as most uniform wvalues,
subject to satisfying the equilibrium equations, has been developed
intuitively. It implicitly uses Laplace’'s principle of insufficient
reason, which requires that in the absence of any good reason to allocate
different values to unknown quantities the same value should be allocated
to them all. The sufficient reason for a non-uniform choice in this case
is that wvalues have to satisfy Eqs. (1) and (2). Laplace’s principle
therefore leads to the idea that the most likely flows will satisfy Egs.

(1) and (2) and will be as uniform in value as possible.

Laplace’s principle is generally recongnized not to be a fundamental
principle. It is a consequence of the Shannon/Jaynes maximum entropy
formalism®'5 (MEF) which provides an ideal tool with which to tackle the
most likely flow problem of Figure 3. Values must be-assigﬁed to the L

link flows and each of those values has some observer uncertainty



associated with it. If the uncertainty associated with each link flow
can be represented probabilistically (or as some probability-like
quantity which satisfies all the conditions which are axiomatic to
probabilities) then, by virtue of the MEF, the most likely flow rate
assignment problem of Figure 3 can be posed as the problem of maximizing
the Shannon entropy of the link probabilities subject to whatever is

known about the system, i.e. Egqs. (1) and (2).

THE GRAVITY MODEL

The network flow problems described above are concerned with allocating
flow values but the MEF is couched in terms of allocating probabilities.
The question of how to introduce probabilities into Figure 3 and Eqs. (1)
and (2) 1is now addressed. Two different ways of doing this will be
examined in detail and will be shown to give the same most likely flow

values.

The first approach considers the equilibrium equations (1) and (2)

and denotes by T the sum of all link flows in the network. Thus:

M M+N
T= 2¢,=- Z I,= X 0 (4)
ij i=1 j=M+1
Probability-like quantities p,;, which satisfy non-negativity and

normality conditions associated with probabilities, may be introduced as

ratios of link flow ty; to total flow T. Thus:

Pyg ™ & ST V ij (5)
The most likely flow estimation problem now becomes that of maximizing
the Shannon entropy of the link probabilities subject to Egs. (1) and (2)

with link flows substituted by Eq. (5). i.e.

Maximize : (S/K) = - Z p;;1n (P ;) (6)
Pi ij



Subject to : T p;, =1 (7)

S pyy; = L/T i=1,...,M (8)

_zl Py, = 0;/T j o= M#l, ... M4N-1 (9)
1=

Eq. (6) is the Shannon entropy function‘ in which S is the entropy and K
is an arbitrary positive constant which is not required for maximization.
The above problem represented by Egs. (6) to (9) has a unique solution
which may be determined by examining the stationarity of its Lagrangean.

The solution may be derived as shown in the Appendix and is:
Py, = I,0,/T? vV oij (10)

and Eq. (5) imﬁediately recovers the required estimates of the most
likely link flow as:

ty; = 1,0, /T vV ij (11)

i3
which corresponds to the well-known gravity model of transportation
engineering. Substituting the probabilities (10) into the entropy
function (6) gives the maximum entropy value for a fully-connected

network as:

M+N
(I,/T) In (1,/T) - Z (O0;/T) 1n (0O;/T) (12)
1 j=M+1

(S/K)" "= -

™M=

i

In the case of a less-than-fully connected network  (such as the
roundabout turning flow problem of Figure 2b) result (11) still holds but
yields a maximum entropy value (S/K)" which is smaller than that given by

(12). This indicates that in a fully connected network the maximum value



of the internal entropy is determined by the external macroscopic
boundary conditions, but removing links removes potential wuncertainty
from the internal system and the maximum internal entropy can no longer

reach this absolute macroscopic value.

The emergence of the gravity model as representing most likely flow
estimates is neither new nor unanticipated. Transportation engineers
have been using it for many years as an estimator of traffic flows in a
variety of circumstances?. Its validity is incontrovertible and is
further strengthened by the fact that it may be derived, as here, from
first principles as a direct consequence of the maximum entropy
formalism. However, it is important to note the restrictions and
limitations implicit in Figure 3 and Egs. (1) and (2). Consequently, the
gravity model is directly applicable to the roundabout turning flow
problem of Figure 2 but not to the general network problem, for instance
the water supply network of Figure 1 in which all links do not start at a
source and end at a demand node. Also, in general, there may be several

different paths between a source node and a demand node.

In order to handle general networks something more than the gravity
model is required. The key to developing an alternative lies in defining

probabilities in a different way from Eq. (5), and is described next.
MULTIPLE PROBABILITY SPACE MODELS

Shannon's entropy is defined for independent and exhaustive probabilities
only. These conditions are satisfied by the probabilities in Eq. (5),
provided all links of the network start at a source and end at a demand
node, as depicted in Figure 3. Essentially, this proviso means that the

probabilities in Egqs. (5) are suitable, in the context of entropy, only

for networks in which there are no links connected in series. For
example, in Figure 1, all link pairs (ij, jk), vi, j, k=1, ...,N are
connected in series. In any network with series connections, proba-

bility-like terms may still be defined but may not be independent. For

any series-connected pair of links (ij, jk),, the flow in link jk is made
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up, at least in part, of the flow from link ij. As such, these flows are
not independent. Consequently, if the corresponding probability-like
quantities are defined as in Egs. (5), those quantities would not be

independent.

Refering to Figure 3 again, an alternative way of introducing probabili-

ties is to define p,, as the proportion of the total inflow at node i
which is carried onwards by link ij (i.e. the probability that an element
of the flow which enters node i is transported along link ij to node ).

With this definition, if the inflow at node i is I,, then the expected

value of the flow on link ij will be t,; = p,;I,. Substituting this into
Eqs. (1) and (2) gives:

M+N
T py; =1 i=1,...,M (13)
j=M+1
M
_21 f’iin = Oj j = M+1,... ,M+N-l (]_4)
1=

These equations are equivalent to Eqgs. (8) and (9) with the earlier
definition of probabilities. Whereas in the earlier formulation there
was one normality condition (7) which embraced all the probabilities,
there are now M normality conditions (13) and M sets of probabilities.
Furthermore these probability sets are not independent: they are
conditional upon the probabilities associated with the source node
inflows I,, i = 1,...,M. The question which needs to be addressed is
what form of entropy is the correct one to use with multiple dependent

probability spaces?

This question has been addressed by Khinchin® who has given several
forms of the Shannon eﬁtropy function for multiple probability spaces.

Two general results are useful:

i)  For two independent discrete probability distributions Q and R, the
entropy of the joint distribution QR is the sum of the entropies of Q and

R separately. Thus:
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S(QR) = S(Q) + S(R) (15)

ii) For two mutually dependent probability distributions Q and R, the
entropy of the joint distribution Q*R (* is used to denote that Q and R

are mutually dependent) is given by

S(Q*R) = S(Q) + S(R|Q) (16)
where S(R|Q) = Z p S, (R) 17)
q

Pq is the probability of the g-th outcome in probability distribution Q,
S,(R) 1is the entropy of probability distribution R conditional upon the
qg-th outcome in probability distribution Q occurring, and S(R|Q) is the

entropy of probability distribution R conditional upon Q occurring.

Important features of the above results are that S(Q*R) is invariant
with respect to changes in position of Q and R. S(R*Q) is therefore
identical to S(Q*R) and is obtained from Egs. (16) and (17) with the
roles of Q and R interchanged. Also S(Q*R) reduces to S(QR) when Q and R
are independent and further reduces to S(Q), the Shannon entropy function
(6), when there is only one probability distribution. Extensions to more

than two probability distributions follow the rules given above.

Returning to Egs. (13) and (14), the M probability sets cannot be

treated as independent. For a particular set, i, probabilities Pis

measure the likelihood that the inflow at i is transported to demand node
j, j = M+, ... M#N. These probabilities within set i are independent but
set i itself is conditional upon inflow existing at node 1. If p, is
defined to be the probability of inflow at node i then these probabili-
ties can be determined from the network data: p; 1is given by the
proportion of the totai inflows at all source nodes which exists at node

i. Thus:
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M
p, ~I,/% I, = 1,/T i=1,...,M (18)

Eqs. (16) and (17) then give the form of the entropy function to be used
with the mutually dependent probability sets defined by Eqs. (13) and
(18):

M+N )
p; 2 pijln (pij) (19)
1 j=M+1

S/K = -
i

p;1n (p;) -
1 i

I ™M=
™=

which, on substituting the known probabilities p, given by Eq. (18)
becomes
M+N

M M
S/K=- 2 (I,/T) In (I,/T) - = (I,/T) = py;ln (py;) (20)

i=1 i=-1 j=M+1

Most likely flows in the multiple probability space formulation are

then given by maximizing the entropy function (20) over probabilities ﬁij

for all ij, subject to constraints (13) and (14). There is an analytical
solution to this problem which can be found by examining the stationarity
of its Lagrangean in a similar way to result (10), as given in the

Appendix. The solution is:

P;;j = 0,/T VvV ij (21)
The link flows are then given by
t;; = Py I, = I,0,/T Vij (22)

which are exactly the same as the flows (11) calculated earlier for the
single probability space formulation. Substituting the probabilities
(21) into the entropy function (20) and assuming a fully connected
network yields the same maximum entropy value (12) given by the earlier

formulation.

Two different formulations for determining most likely flows in a

network similar to Figure 3 have now been developed. Both the single and
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multiple probability space formulations give identical flow régimes and
total wuncertainty wvalues. Both formulations are restricted to the
conditions associated with Figure 3 and neither is directly applicable to
the water supply network of Figure 1. The next section describes how the
multiple probability space formulation can be extended to become
applicable to more general networks and uses the Figure 1 example for

demonstration purposes.
MULTIPLE PROBABILITY SPACE GENERAL NETWORKS

Because of difficulties of probabilistic independence, as discussed
earlier, the single probability space model cannot easily be extended to
a network such as Figure 1. Turning to the multiple probability space
approach, the key elements in the model developed earlier for Figure 3

were as follows:

(i) A set of normalized probabilities 513 was defined at each node i

where the nodal inflow split into at least two outflows. The ﬁij there-
fore represent the probabilities associated with flow splitting

processes.

(ii) The probabilities ﬁij of flows leaving node i were conditional upon

probabilities associated with the arrival of inflow at node i, p,.
(iii) The entropy function used was the conditional entropy function.

(iv) Constraints upon the entropy function maximization originated in the

flow equilibrium equations at all nodes except the final demand node.

These four elements provide the basis for extending the multiple
probability space model to more general networks such as that shown in
Figure 1. Figure 4 shows ‘the network example of Figure 1 in a more
general form with numerical values of source flows and demands replaced

by algebraic quantities. Figure 4a gives details of the node numbering
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and link connectivities, supplies and demands, and also identifies the
link flow quantities, t;;. Figure 4b gives details of all the probabili-
ties associated with this particular problem. First, all the elements of

the model are assembled according to requirements (i) to (iv) above.

In accordance with (i) there are flow splitting processes at the
source nodes 1 and 2, and also at nodes 3, 4 and 5. At the source nodes
probabilities are easily defined as ratios of link outflows to the total
link outflows at each node. Thus, since the total of the link outflows

is in this case equal to the known source inflow:

Prs = t13/L; 3 Py = t/T (22a)
P-’23 = t,3/1, : ﬁza = t,, /1, (22b)

The flow splitting probabilities at nodes 3, 4 and 5 are also ratios
of individual outflows to the sum of the outflows at a node and lead to
the following definitions of probabilities. Note particularly that a
probability must be assigned to the demand from a node. The reason for
doing this is that, although the demand at a node is known, the total
outflow from a node is not known. Hence the ratio of the demand to the
total outflow is not known and a probability is required to represent
this. The use of zero as a second suffix denotes these demand probabili-

ties. Thus:

Pay = t3,/Ts i DPas = t3s/Ty ;  Pag = 05/Ts (22¢)
in which T, = t;, + ty5 + 0Oy,

546 = tkS/TA ¥ 1-31.0 = OQ/TA (224d)
with T, = t,, + 0,, and

Pss = tss/Ts : Pog = 0./ (22e)
with T, = t o + Og

The way in which Eqs. (22) define the probability sets ensures that they

satisfy normality without the need for separate normality constraints.
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Non-negativity of the probabilities is also ensured provided that link

flows are always in the direction defined and never become negative.

In accordance with (ii), all the above probabilities are conditional
upon flow existing at the nodes at which these flow splitting probabili-
ties are defined. In the case of the source nodes 1 and 2 the
probabilities that flow exists there are known and are given by the first

equality in Eq. (18).
p, = 1,/(I, +I,) ; p, = L,/(1; + 1) (23)

In accordance with (iii) the conditional entropy function for the
network of Figure 4 may be assembled systematically using the principles
of conditional probability and the conditional entropy definitions (16)
and (17). Starting with the two source nodes there is the entropy, 5,
of the probabilities p, and p, that flow exists at the source nodes. This
is:

S = -P;1n (py) - py1n (py) (24a)
There are then the entropies of the probabilities associated with the
link flows leaving the two source nodes. For node 1, probabilities §13

and ﬁlh are conditional wupon p,, and the conditional entropy, S, is

therefore:

S, = - py[Pyaln (Py3) + Pyyln (Py)] (24b)

For node 2, probabilities ﬁzs and ﬁza are conditional upon p, and the

entropy is therefore:
S, = - pzlézaln (ﬁza) * ﬁzaln (ﬁza)] (24c)

At node 3 there is entropy associated with the probabilities for link
flows leaving node 3. These flows are conditional upon flow arriving at
node 3. < Flow can arrive at node three by two routes: from node 1 via

link 1-3, and from node 2 via link 2-3. The probability of flow arriving
at node 3 by the first of these routes is P1ﬁ15 and by the second route

is p,P,5- Thus the conditional entropy at node 3 is:
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S; = ~ [PyPys * PaPas)[PsyIn (Ps,) + Psln (Pys) + Pypln (Py,)] (24d)

Similarly for node 4 the entropy of the flows leaving node &4 is
conditional upon flow arriving at node 4 from the source nodes 1 and 2,

and also from node 3. Thus the conditional entropy at node &4 is:
By m = [plﬁlk + pzﬁza o= ﬁaa{p1513 * pzﬁza}] [ﬁasln (ﬁqs)
+ Poln (p,g)] | (24e)
Similarly at node 5 the conditional entropy turns out to be:
85 = - [Pys(PyPyy + PPy30 ] [Psgln (Psg) + Psgln (Psy)] (24£)

The conditional entropy of the entire network of Figure 4 is then simply

the sum of the separate entropies in Eqs. (24a) to (24f):
S/K=8,+8 +5, +85, +5, +5; (25)

In accordance with (iv), constraints are generated by the flow
equilibrium conditions at all nodes except the final demand node, node 6

in the network of Figure 4, and are:

tis + 6, =1, (26a)
tys * 5, =1, (26b)
Cia *tyy =t5, +t;, + 04 (26c)
tiy + ty, + ty, =t + 0, (26d)
tyg = tg, + O (26e)

The above model contains both link flow unknowns t;; and probability

unknowns ﬁij‘ which are connected through the probability definitions

(22). The first step in solving the model consists of simplifying it to
an easily solveable form. There are several ways in which this can be
done; the way chosen here is to express everything in terms of a reduced
number of link flow wvariables. The five flow equilibrium constraints
(26) contain eight link flow unknowns but are equalities. They can
therefore be used to express all link flows in terms of just three
independent link flow wvariables. Choosing t,,, t,, and t;, as the

independent variables yields:
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ty, = : by (27a)
t,, = T5 - by, (27b)
tyg = I, +I, - 0, - t;, - &, - tai (27c)
tie = - 0, + ty, T, t 4y (274)
teg = I, + I, - 05 - Oy - ty, - t;, - by, (27e)

Definitions (22a) to (22e) may then be used to express all the probabili-

ties ﬁij in terms of unknowns t,,, t,, and t;,, and the entropy function

(25) then becomes a function only of these three variables.

The flow directions defined in Figure 4a require that all the link
flow quantities t;; should be non-negative. The final model should
therefore consist of maximizing the entropy function (25) over the link

t

flow wvariables t and t,, subject to constraints that all the

140 24
right-hand side functions in Egs. (27) and the 1link flow wvariables
themselves must be non-negative. However, the final model was actually
solved by NAG  library routine EO4JAF which is an unconstrained
optimization routine, and the constraints were omitted whilst maximizing
the entropy function. The optimum solution was then substituted into the
constraints to check that they were all satisfied but inactive. The
reasons for adopting this approach were that it provides a much simpler
and quicker solution, and that, as has been argued earlier, it is

expected that the maximum entropy solution will have flows which are as

uniform as possible without any being equal to zero.

The entropy function ‘25) for the example of Figure 4 was construct-
ed somewhat laboriously using the conditional entropy definitions (16)
and (17). In fact its form is quite simple and has only two types of
terms. The first type comprises the entropy of the source flow probabili-
ties, S,, given by Eq. (24a). In most network examples the source flows
are known and form part of the available data, so these source flow
entropy terms are actually known constants. They may be omitted from the
objective function maximization and are not necessary to the solution
process. The only case in which they are needed is that of a network in
which source flows are not specified and must be estimated along with the

pipe flows. The form of this first type of terms is always



18

piln (pi) i=1,...,M (28)
1

]
I
'
™M=

i
in which p, is as defined in Eq. (18).

The second type of terms are S, to S; given by Egs. (24b) to (24f).
Each of these equations represents the conditional entropy at a node of
the network where flow splitting probabilities are defined. The form of
these terms is always the same and consists of the entropies of all the
outflow probabilities, including that of any demand at the node,
multiplied by the total probability of flow arriving at that node by all

possible paths. The form of these terms at any node k in the network is

therefore

S, = -Px [Z Pyyln (P;)] (29)
kjeN,

in which N, is the subset of outflows from node k including any demand.
p, is the total probability of flow arriving at node k by all possible

paths.

All nodes of the network generate terms of the form of Eq. (29) and
the entropy function sums them all. At a node which has only one outflow

(either a demand or a link outflow) the single entropy term in the [ ] in

Eq. (29) is =zero by virtue of the way in which probabilities ﬁkj are

defined. This accords with intuition since at such a node there should
be no additional uncertainty to what already exists elsewhere in the
network. The entropy function as defined by Egs. (28) and (29) therefore
has a conveniently structured form which permits it to be assembled

easily for any network.

The network of Figure 1 is used as a numerical example of the
calculation of maximum entropy flows in a general network. Table 1 gives
numerical results for two instances of Figure 1. 1In case A the inflows
and outflows are exactly as shown in Figure 1. In case B the inflows at

nodes 1 and 2 are interchanged. In both cases the link flow directions

are as in Figure 1.
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DISCUSSION

The results in Table 1 show several interesting features. Firstly, the
link flows in the lower half of the network are the same for both cases A
and B. Further study reveals that they remain the same for any
combination of source flows at nodes 1 and 2 totalling 55 units. The
reason for this is that nodes 1 and 2 are each connected to the rest of
the network in exactly the same fashion, and they provide flow to nodes 3
and 4 in exactly the same'proportions. From Table 1 the proportions of
source flow transmitted from each -source to nodes 3 and 4 may be
calculated as 0.7121 and 0.2879 respectively. These proportions of the
total available flow are required at nodes 3 and 4 in order to serve the
demands in the rest of the network using maximum entropy pipe flows. The
network is unable to distinguish topologically between the two source
nodes, and, for demands as in Figure 1, any combination of source flows

at nodes 1 and 2 which totals 55 units will be distributed to nodes 3 and

4 in these same proportions.

Secondly, a means of partially checking the wvalidity of the results
of Table 1 is to consider the example of Figure 1 with all directions
reversed. The two source flows become demands, the four demands become
sources, and the flow directions along all links are reversed. A
complete reversal of all directions in this fashion completely changes
the definitions of flow splitting probabilities and leads to a different
conditional entropy function from Eq. (25). However, it should not
change the intrinsic total uncertainty (entropy) in the system. Solving
the reversed model, therefore, should yield exactly the same results as

those of Table 1. It does, and this provides reassurance that the

calculation are correct.

A third comment which may be made on the results of Table 1 is that
the invariance of the most likely flow values in the links in the lower
half of the network is reassuring from both design and reliability
viewpoints. In the case of a water supply network, designing the pipes

to carry these flows would appear to confer a considerable degree of
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invulnerability upon the lower half of the network to possible variations
in the source flows. The issue of network reliability and the importance
of maximum entropy flows in this context is too large for detailed

examination here but has been studied by Awumah, Goulter and Bhatt?:3.

CONCLUSIONS

The problem of estimating from incomplete data most likely values of
flows on the links of a general network has been studied. Most likely
flows were first characterized as those flows which maximize an entropy
function for the network subject to the available information. Possible
forms of this entropy function were examined and it was shown that a
multiple probability space conditional entropy model was most appropriate
for general network problems. The detailed solution of a typical general

network problem was presented and the results discussed.

A considerable amount of work still needs to be done. The paper has
established the basic elements and outlined the structure of a computer
method for the calculation of most likely flows in any general network.
That computer program needs to be written and tested and the results
examined. The nature of these maximum entropy flows needs to be studied
and interpreted. Conjectures about their potential value in the design
of engineering‘networks and about possible close relationships between
entropy and reliability need to be critically-examined and tested. The

ability to infer most likely values in networks has many potential uses

which need to be explored. Essentially, this paper has shown how the
calculations may be done: the wvalue of the results remains to be
established.
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APPENDIX Derivation of result (10)

The Lagrangean of protlem (6)-(9) may be written as:

L(p,A,@,8) == £ pyy dnlpy ) + (L+A) | pyy - 1]
ij ij
M M+N M+N-1 M
+ I a z Pij - L/T |+ = B; z Pij - 0,/T
i=1 J=M+1 j=M+1 i=1

Stationarity of the Lagrangean with respect to a typical probability,

Pi+joo yields

Py, y = exp(A)exp(a;, + f;,) (A1)
Stationarity of the Lagrangean with respect to X yield the normality

condition (7). Substituting (Al) in (7) gives

exp(A) Z exp(e; + ﬁj) =1
ij

exp(A) =1/ = exp(e; + ﬂj) (A2)
ij

Substituting (A2) in (Al) gives

pi'j' = exp(ai: i* ﬁ_]')/ .z': exp(ai + IBJ)

1]
M M+N-1
= exp(e; ., )exp(B;.)/ Z  exp(ay) z exp(B;) (A3)
i=1 j=M+1

Stationarity of the Lagrangean with respect to a typical multiplier, a,., -

vields the inflow constraint (8) for node i':

M+N

Jj=
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Substituting result (A3), this becomes

M+N-1 M M+N-1
exp(ai’ ) X exp(ﬂj, )/ z exP(Gi) z exp(ﬂj)
j=M+1 i=1 j=M+1
- 1,,/T
M
exp(e;,)/ = explay) = I;./T (A4)
i=1

Stationarity of the Lagrangean with respect to a typical multiplier, ﬁj,,

yields the outflow constraint (9) for node j':

pij' = Oj’/T

o=

i=1

Substituting result (A3) and proceeding as for a;, this gives

M+N-1

exp(B;,)/ =  exp(B;) = 0,/T (45)
j=M+1

Substituting results (A4) and (A5) into (A3) gives

[ M M+N-1
Pi.y = | expla;.)/ T expley) exp(B;.)/ Z exp(B;)
i=1 j=M+1

] [or]

Pirjo ='.[.i-',OJ.,/'1’2
which is result (10) when generalized for all i and j.
Result (21) for the multiple probability space model may be derived

in a closely similar manner by examining the Lagrangean of the problem

defined by Egs. (20), (13), and (14).
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Table 1 Maximum entropy flows for the network of Figure 1

flow rate

link

case A case B
1 -3 14.242 24.924
1-4 5.758 10.076
2 -3 24.924 14.242
2 =k 10.076 | 5.758
3 -4 15.833 15.833
3 -5 8.333 8:333
4 - 6 . 6.667 6.667
5-6 3.333 3.333

(8/K) 2.41098 2.41098
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FIGURE CAPTIONS

Figure 1 Water supply network

Figure 2 a) Four-arm roundabout, and b) the turning flows represented

as links of a network
Figure 3  Network notation
Figure 4 Water supply network example of Figure 1

a) Supply, demand and flow definitions

b) Probabilities

TABLE CAPTION

Table 1 Maximum entropy flows for the network of Figure 1
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