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Abstract

A model is presented for the thickening of a raked suspension. The model is based on

Kynch theory (Kynch, 1952), i.e. it describes systems with solids fractions sufficiently low

that the solids have not gelled into a weight-bearing network. However the model incor-

porates a modification to describe how raking the suspension causes flocs or aggregates

within it to densify. This floc densification opens up channels between the flocs through

which liquid escapes, making the suspension easier to dewater. The densification theory

presented here predicts profiles of varying solids fraction vs height in the settling zone

in a thickener, information which is not normally available when designing thickeners via

conventional Kynch theory. Performance enhancements for thickeners due to raking can

be readily determined, either in terms of increased underflow solids fraction or increased

solids flux. As underflow solids fraction is increased, thickeners operated at a specified ag-

gregate densification rate (or equivalently at a fixed settling zone height) tend to approach

a ‘fully densified’ suspension state (defined as a point at which the extent of aggregate

densification ceases to change with time), with improved thickening performance.
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• Suspensions are raked causing flocs within them to densify

• Floc densification is predicted to enhance thickening performance

• Solids fraction profiles along a thickener can be computed even for Kynchian systems

• A fully densified state is approached as underflow solids fraction grows

1. Introduction

Dewatering of solid-liquid suspensions is a common engineering operation, with a

multitude of applications, in areas including water recycling, waste management and

minerals processing (Boger, 2009; Jones and Boger, 2012). There are many different types

of engineering equipment available to achieve suspension dewatering, including batch

settlers (Concha and Bustos, 1991), filter presses (Landman et al., 1991; Landman and

White, 1994; Martin, 2004a), centrifuges (Berres et al., 2005a,b; Stickland et al., 2006),

as well as continuous thickeners (Bürger et al., 1999; Bürger and Concha, 1998; Concha

and Bustos, 1992; Doucet and Paradis, 2010; Landman et al., 1988; Martin, 2004b; Usher

and Scales, 2005).

Chemical engineers are often faced with the task of designing and operating these

types of equipment. However dewatering performance depends not solely upon the equip-

ment specifications, but also upon the material properties of the suspension being de-

watered (Landman and White, 1994). Accordingly there has been considerable effort in

developing dewatering design methodologies that take explicit account of theories of sus-

pension rheology, amongst the best known of them being that of Kynch (1952) and that

of Buscall and White (1987).

These design methodologies tend to rely on phenomenological measurements of sus-

pension rheology properties, for which measurement protocols already exist (Berres et al.,

2005a,b; de Kretser et al., 2001; Green et al., 1998; Landman and White, 1992; Stickland

et al., 2008). However the suspension rheology that is measured is strongly influenced by

the suspension physical chemistry. Indeed in engineering practice, suspension dewatering

rates are enhanced by addition of chemical flocculants (Usher et al., 2009). These chem-
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ical additives usually contain polymers which form bridges (Usher et al., 2009) from one

individual solid particle to the next: the particle-polymer binding interactions tend to be

sufficiently strong that the bonds can be considered to be irreversible (on time scales of

interest). The solid particles joined by polymer bridges then form into a loose aggregate

called a floc.

These aggregates or flocs tend to settle faster under the action of gravity than the

individual solid particles. This is because when more and more individual particles are

present in the floc, the downwards net buoyancy force grows more rapidly than its so

called ‘friction factor’ (defined as the ratio between the frictional drag force on the floc

and its speed relative to surrounding liquid). Indeed, whereas the buoyancy force is

directly proportional to the number of individual solid particles in the floc (and hence to

the overall floc volume), the friction factor tends to scale as the radius of the floc as a

whole (Batchelor, 1967). This latter scaling follows because the surface area of the floc

(over which frictional forces act) grows proportionally to the square of the floc radius,

whilst the rate of strain (due to the floc moving with a given velocity relative to the

surrounding liquid) scales inversely with the radius. It follows that if an aggregate or floc

containing a given number of solid particles can be made more compact (such that its

overall radius decreases) settling rates can be enhanced yet further.

One mechanism for achieving this is by raking the suspension, which can speed up

dewatering rates in some cases by orders of magnitude (Gladman, 2006; Gladman et al.,

2005, 2010; Usher et al., 2009; van Deventer et al., 2011). Raking in this fashion introduces

shear forces that cause individual particles within an aggregate to displace relative to

one another. Except in extreme cases where the imposed shear rates are so high as to

tear aggregates apart altogether, these relative displacements produce additional contacts

between particles and polymer bridges within the floc, binding the aggregate together

rather more tightly (Mills et al., 1991; Usher et al., 2009; van Deventer et al., 2011). Here

this process is called aggregate densification.

Aggregate densification is expected to affect the suspension material properties and

thereby the dewatering performance. Indeed theories describing the effects of aggre-
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gate densification upon suspension material properties are already available in the litera-

ture (Usher et al., 2009; van Deventer et al., 2011; Zhang et al., 2013a,b). These theories

determine material properties not only in terms of the solids fraction within the aggre-

gates themselves, but also in terms of the overall solids fraction of the suspension (which

takes account of zones of clear liquid, if any, between the flocs).

One key feature of the theories (Usher et al., 2009; Zhang et al., 2013a,b) is that

significant benefits from aggregate densification are expected when overall solids fractions

are ‘low to moderate’, which should be interpreted to mean that solids fraction should be

low enough that flocs either remain isolated from one another (interacting with other flocs

only hydrodynamically) or else are packed together only very loosely into an exceedingly

fragile network. Under these circumstances, aggregate densification then opens up wide

channels between flocs, through which liquid can escape. On the other hand, if the solids

fraction in the suspension as a whole is comparatively high (e.g. comparable with the

solids fraction in an individual floc), it follows that flocs are necessarily tightly packed

together and must interpenetrate one another. There are no obvious preferred channels

between the flocs for liquid escape, and so attempts to densify flocs may result in less

dewatering benefit (Usher et al., 2009).

The aggregate densification theory has been used to model dewatering processes in

batch settling (van Deventer et al., 2011) and also in the closely-related operation of con-

tinuous thickening (Usher et al., 2009; Zhang et al., 2013a,b). Here the focus is specifically

upon on the case of buoyancy-driven thickening, where suspension is fed into and flows

through the device, with concentrated suspension being drawn off as underflow at the

bottom and with clear liquid being drawn off the top. Such a device combines the con-

ventional chemical engineering benefits of a continuous operation, with the mathematical

modelling simplicity for a device that (unlike a batch settler) can be made to operate at

or near steady state. Indeed steady state operation of thickeners will be the focus in all

that follows. Here ‘steady state’ refers to steady operation in the Eulerian sense. The

thickener is of course unsteady in the Lagrangian sense: if one follows the settling solids,

their state must be changing as dewatering occurs.
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It is noteworthy that the previously mentioned work on modelling thickening with

aggregate densification (Usher et al., 2009; Zhang et al., 2013a,b) tended to focus on

‘moderate to high’ overall solids fractions. Specifically it focussed on cases where flocs

were packed together into a network, possibly still with some gaps between flocs (mod-

erate solids fraction) or else with flocs densely packed and interpenetrating (high solids

fraction). With the exception of some of the cases considered by Usher et al. (2009),

this previous work has not however considered thickening where the level of dewatering

demanded is comparatively modest, in other words where the majority of the flocs within

the thickener are fairly isolated from one another and so do not experience significant

contact interactions with nearby flocs through e.g. being packed together into a network.

It might seem strange a priori that the previous modelling work on densified thickening

considered primarily the high overall solids fraction regime (where the benefits of aggregate

densification are in certain cases quite limited) and yet has seldom considered the regime

of much lower target solids fractions (where the benefits of aggregate densification can

be realised). The reason for this concerns the physical differences between low solids

fraction suspensions and their moderate-to-high solids fraction counterparts, and how

those physical differences consequently impact upon the resulting mathematical models.

Consider first of all, for simplicity, the nature of the theories in the absence of any

aggregate densification. The particular overall solids fraction at which the flocs cease to

be isolated, and instead form together into a network, is called the gel point (Landman

and White, 1994). Suspensions at overall solids fractions below the gel point are typically

modelled using Kynch theory (Kynch, 1952), which balances the buoyancy and viscous

drag forces on a floc.

The key material property of the suspension that governs its dewatering behaviour

is either a solids settling speed or a solids settling flux (functions of overall solids frac-

tion (Kynch, 1952)), or a closely related property called the hindered settling factor (a

measure of how the friction force grows with solids fraction due to solids interacting hydro-

dynamically (Landman and White, 1992), with direct contact interactions between solids

being insignificant). Kynch theory applied to thickening (Concha and Bustos, 1992; Fitch,
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1966; Moncrieff, 1964; Shannon et al., 1963; Shannon and Tory, 1965; Shannon et al., 1964;

Talmage and Fitch, 1955) enables one to investigate the relationship between the overall

suspension solids fraction within the thickener, the suspension flux through the thickener

and the solids fraction in the thickener underflow. This relationship is sensitive to the

hindered settling induced by hydrodynamic interactions.

Suspensions at solids fractions above the gel point on the other hand are modelled

using the theory of Buscall and White (1987), which incorporates an additional force

(arising from a ‘network stress gradient’) in addition to buoyancy and viscous drag. The

so called network stress (a measure of the weight-bearing strength of the network) is a

material property that depends on the overall solids fraction. Thus the ‘network stress

gradient’ force in Buscall and White theory depends on the gradient of solids fraction. The

theory therefore provides information about gradients of solids fraction, and hence about

profiles of solids fraction versus position in the thickener. Thickener design computations

using Buscall and White theory or analogous theories (Bürger et al., 1999; Bürger and

Concha, 1998; Concha and Bustos, 1992; Landman et al., 1988; Martin, 2004b; Usher

and Scales, 2005) are thereby more involved than those of Kynch theory, but the level of

design detail extracted from Buscall and White theory is correspondingly greater.

The above discussion concerned thickener design for ungelled vs gelled suspensions

in the absence of aggregate densification. If aggregate densification is now factored into

the design computations in e.g. the case of a gelled suspension, thickening performance

enhancements can be predicted (Usher et al., 2009; Zhang et al., 2013a,b) provided the

floc network is not too densely packed together (to preclude any gaps whatsoever between

the flocs), but the nature of the information that one extracts from a ‘densified’ Buscall

and White theory is similar to what one obtains from the undensified theory.

In the case of an ungelled ‘Kynchian’ suspension however where the level of informa-

tion that one extracts from the undensified theory is rather less, it might at first sight,

appear that the resulting comparison between undensified and densified cases would be

straightforward and perhaps even rather trivial. The purpose of this work is to demon-

strate that even in the context of Kynch theory, thickener design calculations are not
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trivial in cases where aggregate densification is included. Indeed, on the contrary, a sur-

prising amount of thickener design information can be readily extracted. In particular,

one can deduce the detailed evolution of the state of the suspension as the solids migrate

through the thickener: both the suspension solids fraction and the amount of aggregate

densification evolve in a well defined way during the course of this migration. Since the

state of the suspension defines the solids settling velocity, one can thereby relate the sus-

pension’s temporal evolution to a spatial profile through the thickener. This represents an

advance over previous work, since even though Usher et al. (2009) did consider some cases

of thickening of ‘Kynchian’ suspensions, it was assumed that flocs densified to a certain

fixed level immediately upon entering the thickener, meaning that spatial information

about the state of the suspension moving through the thickener were never deduced.

To summarise, there should be benefits (Arbuthnot et al., 2010; Loan and Arbuthnot,

2010a,b) from raking either a gelled or a Kynchian ungelled suspension (in the former case,

provided the suspension solids fraction is not exceedingly far above the gel point). However

the benefits deriving in the ungelled case are comparatively little explored, so that is the

particular case considered here. Specifically, thickening performance enhancements will

be computed and analysed for the case of an ungelled suspension in a thickener operated

at steady state (in the Eulerian sense) whilst solid aggregates in suspension densify (in

the Lagrangian sense) as they migrate through the system.

The rest of this work is laid out as follows. The models employed for thickening

and aggregate densification are discussed in section 2, whilst section 3 briefly discusses

numerical solution techniques for these models. Results of thickener design computations

are presented in section 4 and discussion and conclusions are given in sections 5–6.

2. Models for Kynchian Thickening and Aggregate Densification

This section is laid out as follows. The section begins by reviewing a number of topics,

namely Kynch theory (section 2.1), hindered settling factors (section 2.2), floc densifi-

cation (section 2.3), the link between hindered settling and aggregate densification (sec-

tion 2.4), solids motion during thickening (section 2.5), and system non-dimensionalisation
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(section 2.6). The discussion proceeds to derive the novel densified thickener design equa-

tions that are required here, to describe respectively thickeners with specified suspension

flux (section 2.7), thickeners with specified underflow solids fraction (section 2.8) and

thickeners of specified height (section 2.9). The final topic addressed is preshearing sus-

pensions prior to thickening (section 2.10).

2.1. Review of Kynch theory

The essential element of Kynch theory (Kynch, 1952) is a formula for the floc ‘free

settling’ speed ufs as a function of the overall solids fraction φ. This is written as:

ufs = uStokes(1− φ)2/r(φ, φagg) (1)

where uStokes is the Stokes settling velocity of an isolated floc, r(φ, φagg) in the denomi-

nator is the so called hindered settling factor (a specified function of both overall solids

fraction φ and solids fraction within the aggregates φagg), and the (1 − φ)2 factor in the

numerator (Landman and White, 1994) comes from various effects (the settling velocity

of a floc being slightly less than the slip velocity between a settling floc and surrounding

liquid; as well as a tendency for the drag of the flocs upon the liquid to enhance the liquid

pressure gradient, with this enhanced pressure then slightly slowing the flocs).

2.2. Hindered settling factor

The hindered settling factor r will be considered as follows: first the hindered settling

factor in the case of an undensified system is identified, and then (in a later section) there

is a discussion of how to generalise to the case of a densified system.

Suppose that the aggregate solids fraction in the undensified system is denoted φagg, 0,

and that the hindered settling factor in the undensified system is denoted r0(φ). Following

previous work by Lester et al. (2005) it will be assumed that

r(φ, φagg,0) ≡ r0(φ) = (1− φ)−N (2)

where N is a parameter. That previous work (Lester et al., 2005) has assumed a com-
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paratively large value of the parameter N (i.e. N = 20), and the same value will be

adopted here. Such a large N value would indicate that the hydrodynamic interactions

between flocs grow quite quickly with increasing φ. Conceptually this follows because

flocs are themselves (at least in the undensified state) quite loose structures. Hence the

floc occupies a much larger volume (and so has a much larger hydrodynamic influence on

neighbouring flocs) than in the hypothetical case where the same quantity of solids within

a floc are closely packed with large spatial separation between neighbouring flocs.

2.3. Review of floc densification

Now consider the effects of densifying the floc. Following Usher et al. (2009) and van

Deventer et al. (2011), it is assumed that under the action of shear, the diameter of the

floc (relative to its initial diameter) denoted Dagg evolves with time t (measured as time

since material entered the shear field), as follows

Dagg = (1−Dagg,∞) exp(−At) +Dagg,∞. (3)

Here Dagg,∞ is the final diameter ratio, i.e. the ratio between the diameter of a ‘fully

densified’ floc and an undensified one. The fully densified state here represents a point at

which the extent of aggregate densification ceases to change with time. In addition A is an

empirical rate parameter: for any given shear rate used to rake the suspension the value

of A can be readily measured. In the interests of simplicity we shall treat A simply as

a constant, although aggregate densification rate could in principle (van Deventer, 2012)

be sensitive to system parameters such as solids fraction.

As the floc densifies, the solids fraction within it rises. Mass conservation of solids

within the floc implies

φagg/φagg, 0 = D−3
agg = ((1−Dagg,∞) exp(−At) +Dagg,∞)−3 . (4)

Throughout it will be assumed that Dagg,∞ = 0.9, a typical value employed in previous

studies (Usher et al., 2009; van Deventer et al., 2011; Zhang et al., 2013a,b), although

slightly lower values e.g. Dagg,∞ = 0.846 have also been observed experimentally (van
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Deventer et al., 2011). Clearly, based on equation (4), this chosen Dagg,∞ = 0.9 affects the

possible values of the ratio φagg/φagg, 0, which consequently can never exceed 1.37. Mean-

while the value of A in a ‘typical’ experiment (van Deventer et al., 2011) is 2×10−3 s−1,

although this is sensitive to the rate of raking, and values as high as 10−2 s−1 have been

considered (van Deventer et al., 2011).

The theory presented below does not actually require the particular value of φagg, 0

to be specified: it merely requires that solids fraction φ be substantially smaller than

φagg, 0. It is nevertheless instructive to estimate φagg, 0 as follows: Lester et al. (2005)

quote a solids fraction of 0.22 as corresponding to the suspension gel point (without any

aggregate densification). Meanwhile Usher et al. (2009) estimate that φagg, 0 should be 1.67

times that, i.e. at solids fraction of around 0.37 (again without aggregate densification).

Based on equation (4), as the system densifies, φagg could range as high as 0.50. Different

values of φagg 0 and/or φagg are of course possible as a consequence of the vast range

of particle size, shape and state of flocculation observed across a range of particulate

suspensions (Usher et al., 2013) encountered in the field of dewatering.

2.4. Effect of aggregate densification upon hindered settling

The aggregate densification theory (Usher et al., 2009; van Deventer et al., 2011; Zhang

et al., 2013a,b) allows one to express the hindered settling factor of a system of densified

flocs in terms of that of an undensified system. The theory considers fluid flow both

around and through flocs (Usher et al., 2009), but adopts a particularly simple form in

the case considered here where the solids fractions under consideration are all relatively

low (i.e. less than the system gel point). In that case, liquid flow around flocs completely

dominates that through flocs (Zhang et al., 2013b). One then finds (see van Deventer

et al. (2011); Zhang et al. (2013b) for the detailed explanation)

r(φ, φagg) =
Dagg(1− φ)2r0(φagg, 0φ/φagg)

(1− φagg, 0φ/φagg)2
. (5)

Since r0(φ) tends to be a rapidly increasing function of its argument, it is clear that

equation (5) for a sheared system predicts a much smaller value of r than in the unsheared
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case of equation (2).

In equation (5), the parameter φ/φagg represents the fraction of space filled by flocs.

By substituting equation (5) into equation (1) one sees the batch settling speed of a

system of densified flocs is virtually the same as that of a (distinct) system of undensified

flocs, provided the fraction of space filled by flocs in the two systems is fixed.

There is however a small correction to this picture: in the φ → 0 limit, the settling

speed of an isolated densified floc is a factor D−1
agg greater than that of an isolated unden-

sified floc. The reason is that the solids mass in a floc (and hence buoyancy force on the

floc) remains fixed as it densifies, but its radius decreases, and hence the area over which

frictional forces act decreases.

2.5. Solids motion in a thickener

The foregoing discussion concerned batch settling speeds. In a batch settler, solids

flow downwards whilst liquid flows upward, but the net suspension flux (solids and liquid

taken together) is nil. In the case of a thickener however, a net suspension flux flows q

out the bottom of the thickener. The solids velocity becomes

dz/dt = −(q + ufs) (6)

where the sign convention is such that distances z are measured upwards, and velocities

q and/or ufs are measured downwards.

If the thickener settling zone height is L and the total solids residence time is tres then

it is clear that

L =
∫ tres

0
(q + ufs) dt (7)

where ufs at each time follows flocs as they settle and also densify in the thickener.

Since ufs is inversely proportional to r, and in particular, since r is a rapidly decreasing

function of solids fraction φ, one can only use equation (7) to compute height of a thickener

settling zone, if one knows the ‘operating state’ of the thickener i.e. the time history of φ

values seen by a floc as it migrates through the thickener.

Finding the ‘operating state’ (in the presence of aggregate densification) turns out to

11



be a generalisation of finding the ‘operating point’ (i.e. operating solids fraction) in a

conventional (undensified) thickener, for which ufs becomes insensitive to residence time.

The method for achieving this will be discussed shortly. First however the system of

governing equations will be non-dimensionalised.

2.6. Governing equations in dimensionless form

It is convenient to make the system of equations dimensionless to facilitate the math-

ematical analysis. Velocities are made dimensionless with respect to uStokes and hence it

is possible to define Ufs = ufs/uStokes (dimensionless settling speed) and Q = q/uStokes

(dimensionless suspension flux). There are however two possible ways to make length and

time scales dimensionless, and each of these is considered below.

2.6.1. Scalings based on the densification rate parameter A

Assuming that the densification rate parameter A can be treated as a constant, one ap-

proach to non-dimensionalisation is to define T = At (dimensionless time), Z = Az/uStokes

(dimensionless distance). In this case, an important parameter is dimensionless total res-

idence time Tres in the shear field defined as Tres = Atres, whilst the dimensionless height

of the thickener settling zone is l ≡ AL/uStokes. What these dimensionless scales imply

in physical terms for a ‘typical’ suspension is described in the appendix.

For the aggregate diameter ratio and the solids fraction within the aggregates, the

governing equations become respectively

Dagg = (1−Dagg,∞) exp(−T ) +Dagg,∞ (8)

φagg/φagg, 0 = D−3
agg = ((1−Dagg,∞) exp(−T ) +Dagg,∞)−3 , (9)

while free settling speed is

Ufs = (1− φ)2/r(φ, φagg), (10)

the solids motion through the thickener is

dZ/dT = −(Q + Ufs), (11)
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and the dimensionless height satisfies

l =
∫ Tres

0
(Q+ Ufs) dT. (12)

2.6.2. Scalings based on settling zone height L

Alternatively it is possible to choose scalings such that τ = uStokest/L (rescaled di-

mensionless time), ζ = z/L (rescaled dimensionless distance) and α = AL/uStokes (di-

mensionless densification rate). In this case

Dagg = (1−Dagg,∞) exp(−ατ) +Dagg,∞ (13)

φagg/φagg, 0 = D−3
agg = ((1−Dagg,∞) exp(−ατ) +Dagg,∞)−3 . (14)

The solids motion through the thickener is now

dζ/dτ = −(Q + Ufs) (15)

with the rescaled total residence time τres (which depends on α) defined now as

1 =
∫ τres

0
(Q + Ufs) dτ. (16)

Bounds can be placed on the value of the integral on the right hand side (hence placing

bounds on the possible values of the a priori unknown τres) by evaluating the integrands

either at an undensified operating point (slow densification limit), or at a fully densified

operating point (rapid densification limit). Methods for determining operating points will

be discussed shortly.

2.6.3. Relation between the two formulations

Observe that the dimensionless settling zone height l in the first formulation (sec-

tion 2.6.1) is actually numerically identical to the dimensionless densification rate param-

eter α in the second formulation (section 2.6.2): both are AL/uStokes. Here nonetheless,

the two distinct symbols l and α are retained as a reminder that physically, for a given
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suspension, there are two distinct ways to vary this parameter in experiments, i.e. varying

settling zone height or varying raking rate.

Indeed the two formulations presented in sections 2.6.1–2.6.2 are physically equivalent,

it merely being the case that in the first formulation one controls the value of residence

time Tres (so as to determine the height of the settling zone l) whilst in the second

formulation one controls the value of the densification rate α (in order to determine the

rescaled residence time τres). Not only is it the case that α = l but also ατres = Tres, so

the two different formulations simply swap the roles of the control and response variables.

If one were to adopt the first formulation and vary the parameter Tres until the computed

settling zone height l matched some required target value α, that then is equivalent to

the second formulation (a result that will be exploited later).

2.7. Thickener design with a specified suspension flux

There are various ways in which one can select the operating conditions of a thickener.

If standard (undensified) Kynch theory is applied, typically one might specify the sus-

pension flux Q, which is the case considered in this section. The theory (which permits

discrete jumps in solids fraction) then predicts (Talmage and Fitch, 1955) one jump from

at or around the feed solids fraction to some higher operating solids fraction corresponding

to the hindered settling zone within the thickener, and then yet another jump in solids

fraction at the underflow.

The most straightforward extension of this to the case of a densifying suspension, would

specify the suspension flux Q through the thickener and the total residence time Tres,

interpreted for the purposes of the present discussion as the time to traverse the hindered

settling zone. Instead of having a fixed solids fraction in the hindered settling zone, one

now has a solids fraction that depends on time since entering that zone, i.e. φ = φ(T ) for

0 ≤ T ≤ Tres, an ‘operating state’ rather than an ‘operating point’. The techniques to

identify and analyse that ‘operating state’ constitute the main novel contribution herein.

Observe that knowing Q and Tres is sufficient information to specify the solids flux

Qs (as opposed to the suspension flux Q) through the thickener, and the underflow solids
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fraction φu. Specifically (for a given feed solids fraction φf) the solids flux is

Qs = min
φ≥φf

(Q+ Ufs(φ, φagg(Tres))φ (17)

while the value of solids fraction at the bottom of the hindered settling zone (denoted

now φ(Tres)) is the specific value of φ corresponding to the minimum.

Typically one finds there is a critical value of Q (the suspension flux) such that if the

system is operated below that suspension flux, equation (17) possesses a local minimum for

a φ value strictly greater than φf . Operating the system at a suspension flux (and hence

a solids flux) that is low enough that the solid flux curve possesses such a local minimum

gives robustness in controlling and maintaining steady state thickening behaviour, in the

face of e.g. fluctuations in solids fraction within the thickener.

Having identified Qs, the solids fraction in the underflow φu becomes (Martin, 2004b)

φu = Qs/Q. (18)

This solids fraction (which always exceeds the solids fraction at the bottom of the settling

zone φ(Tres)) corresponds to a so called ‘no slip’ condition for the underflow (Martin,

2004b), i.e. solids and liquid are drawn off at the same speed there. Note that even

though we have found φ(Tres) via Kynch theory, implying that it is a solids fraction below

the suspension gel point, the somewhat larger value φu is (based on the ‘no slip’ condition)

still permitted to be at or above the gel point.

Finally the profile of φ vs T is obtained by specifying that the solids flux must be

uniform through the hindered settling zone, so that

(Q + Ufs(φ(T ), φagg(T ))φ(T ) = (Q+ Ufs(φ(Tres), φagg(Tres))φ(Tres). (19)

As will become evident later (see e.g. the graphs plotted in Figure 1), this permits φ vs

T to be computed, and φ can increase with T as one would expect to achieve dewatering.

Equation (12) can now be used to determine the thickener height, whilst equation (11) can
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be used to convert the time history φ vs T to a spatial profile φ vs Z. Note, by contrast,

that conventional Kynch theory predicts a fixed value of φ in the settling zone (and also

determines a much more dilute value of φ, often of similar magnitude to the feed solids

fraction φf , that can co-exist with that in the settling zone through delivering the same

solids flux): the conventional theory does not however predict where in the thickener the

transition between these two states takes place. Profile information (i.e. predictions of

how solids fraction varies with height) are not available via conventional Kynch theory

without any aggregate densification.

2.8. Thickener design with a specified underflow solids fraction

An alternative way of specifying an undensified thickener is to give the underflow solids

fraction. By extension, an alternate way of specifying a densified thickener is to give φu

and Tres. In this case, the suspension flux in the thickener is (Usher and Scales, 2005)

Q = min
φ≥φf

Ufs(φ, φagg(Tres))φ/(φu − φ) (20)

with again φ(Tres) (solids fraction at the bottom of the hindered settling zone) being the

value corresponding to the minimum. The value of solids flux Qs is Qφu, and the profile

of φ vs T is computed as above via equation (19). Likewise thickener height l and the

profile φ vs Z are computed via the techniques above.

2.9. Thickener design with a specified settling zone height

An alternative design specification is to give suspension flux Q and settling zone height.

When the system is specified in this way, it is simpler to use the alternative scalings

(dimensionless spatial coordinate ζ and time τ in lieu of Z and T ). Equation (17) becomes

Qs = min
φ≥φf

(Q + Ufs(φ, φagg(τres)))φ (21)

with the solids fraction at the bottom of the hindered settling zone φ(τres) corresponding

to the minimum above.
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The difficulty however is that τres is not known a priori but must be obtained from

equation (16) (and the value of τres that is computed is sensitive to the dimensionless

densification rate parameter α). It is expected that τres will be close to an undensified

value (denoted τres, 0 say) when α is small, and will migrate towards a smaller, fully

densified value (denoted τres,∞ say) as α increases.

Once τres is available the solids fraction profile φ(τ) can be obtained via

(Q+ Ufs(φ(τ), φagg(τ)))φ(τ) = (Q+ Ufs(φ(τres), φagg(τres)))φ(τres) (22)

and the spatial profile φ vs ζ follows from equation (15).

Yet another alternative is to specify underflow solids fraction φu and thickener height.

Analogously to equation (20) it is found that

Q = min
φ≥φf

Ufs(φ, φagg(τres))φ/(φu − φ) (23)

with φ(τres) (i.e. solids fraction at the bottom of the hindered settling zone) being given

by the value corresponding to the minimum and with Qs = Qφu, but with τres still being

a priori unknown and given by equation (16).

2.10. Preshearing suspensions

The above discussion (see equations (19) and/or (22)) considered the way in which

a profile for solids fraction φ vs time T (and hence a profile of φ vs position Z) can

be obtained for T values less than the total residence time Tres. It is not however a

priori obvious that equations (19) and/or (22) necessarily admit solutions for all T values

0 ≤ T ≤ Tres. Indeed it turns out (as is actually apparent in Figure 1 to be discussed

in detail later) that for sufficiently small Q, the equations admit solutions, but as Q

increases, it becomes increasingly difficult to satisfy them all the way down to T = 0.

In that case, in order to exploit any operational benefits that aggregate densification

is predicted to provide, it would become necessary to preshear the feed for some time Tpre

prior to it entering the thickener settling zone, a concept that has already been discussed

by Zhang et al. (2013a). In other words, the material would need to be partially densified
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by shear even before entering the thickener. This may be costly to engineer (particularly

if it were to involve retrofitting onto an existing thickener), and it is not clear that seeking

to benefit from aggregate densification at a higher suspension flux Q necessarily outweighs

the potential costs: a simpler operational option in the high flux limit may be to forego

preshear (and thereby forego any benefits that aggregate densification may bring), but

this usually entails sacrificing the underflow solids fraction obtained. Assuming however

that the engineering challenges associated with preshear are surmountable (perhaps e.g.

via recycling material through the thickener (Doucet and Paradis, 2010; Schoenbrunn,

2011)), for the purposes of the discussion to follow, the symbol Tres is used to denote the

total time that the feed is subjected to the shear (comprised1 of preshear time Tpre and

time in the settling zone Tres − Tpre).

It should be emphasised that benefits of aggregate densification can always be realised

without requiring preshear by choosing a small enough suspension flux Q. At larger Q

values, in order to benefit from aggregate densification, preshear may be required for

sufficiently large Tres. Techniques for determining Tpre in terms of Tres are considered

below. However given that preshear may be impractical or costly to achieve, any cases

with nonzero Tpre can be taken as indicative of Q values for which the full benefits of

aggregate densification cannot readily be realised.

2.10.1. Systems with a specified total shearing time Tres

To determine whether preshearing might be required (in order to obtain benefits from

aggregate densification) at a given Tres it is necessary to compare (a local maximum of)

the undensified solids flux with (a local minimum of) the densified one: preshear should

be considered if

max
φ≤φ(Tres)

(Q + Ufs(φ, φagg, 0))φ < min
φ≥φf

(Q + Ufs(φ, φagg(Tres))φ (24)

1The definitions given here are more general than those used previously in section 2.7, for which
preshear was absent, meaning time in the settling zone equalled time subjected to shear.
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where on the left hand side of the inequality the symbol φ(Tres) is used to denote the

value of φ found corresponding to the minimum on the right hand side.

In such cases the required amount of preshear time Tpre turns out to satisfy

max
φ≤φ(Tres)

(Q+ Ufs(φ, φagg(Tpre))φ = min
φ≥φf

(Q+ Ufs(φ, φagg(Tres))φ. (25)

The height of the settling zone is now given by (in lieu of equation (12))

l =
∫ Tres

Tpre

(Q+ Ufs) dT. (26)

The above concerns the case where the residence time Tres is specified and the height

of the settling zone must be calculated. As has been discussed previously, an alternative

way to formulate the problem is to fix the thickener height (i.e. the height of the settling

zone) but to vary the rate of raking. This is considered in the next section.

2.10.2. Systems with a specified densification rate α

There is now a control parameter α (the dimensionless densification rate) and one must

now determine a (rescaled) residence time τres and if necessary a (rescaled) preshearing

time τpre as follows.

First it is necessary to compare the undensified solids flux function with the fully

densified one to establish whether

max
φ≤φ∞

(Q + Ufs(φ, φagg, 0))φ ≥ min
φ≥φf

(Q + Ufs(φ, φagg,∞))φ (27)

where φ∞ on the left hand side is the value of φ determined by the minimisation on

the right, with φagg,∞ being the aggregate solids fraction in the fully densified state.

If this relation is satisfied, then preshearing is never required (at that given Q), i.e.

thickening performance enhancements can be derived from aggregate densification even

in the absence of preshear. If however

max
φ≤φ∞

(Q+ Ufs(φ, φagg, 0))φ < min
φ≥φf

(Q+ Ufs(φ, φagg,∞))φ, (28)
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which tends to occur for sufficiently large Q, then preshear might be needed in order to

exploit the benefits of aggregate densification. Whether or not preshear is needed now

depends on the value of the dimensionless densification rate α: high densification rates

(i.e. high α) require preshearing, whereas low densification rates (i.e. low α) do not.

The symbol αcrit (a function of Q) can be used to denote the boundary between cases

which involve preshear and those that do not, and τres, crit (again a function of Q) to

denote the residence time that satisfies equation (16) for α = αcrit. It is found that

max
φ≤φ(τres, crit)

(Q+ Ufs(φ, φagg, 0))φ = min
φ≥φf

(Q + Ufs(φ, φagg(τres, crit)))φ (29)

where φ(τres, crit) on the left is the φ value found by the minimisation on the right.

Once τres, crit and hence αcrit are determined (for any given Q), then if α ≤ αcrit, one

proceeds to find τres as normal via equations (16) and (22). On the other hand if α > αcrit,

it becomes necessary to solve for

max
φ≤φ(τres)

(Q+ Ufs(φ, φagg(τpre)))φ = min
φ≥φf

(Q+ Ufs(φ, φagg(τres)))φ (30)

where φ(τres) denotes the minimum found on the right hand side. This is to be solved

alongside a constraint equation that the solids traverse a unit height between times τpre

and τres, which implies (in lieu of equation (16))

1 =
∫ τres

τpre

(Q + Ufs) dτ. (31)

To summarise the procedure for determining preshearing time is now as follows:

1. Determine whether the undensified maximum solids flux exceeds the fully densified

minimum;

2. If not, find the critical densification rate such that the undensified maximum solids

flux equals the corresponding densified minimum (at a critical residence time);

3. If the actual densification rate exceeds the critical rate, find the preshear time such

that the presheared maximum solids flux equals the densified minimum correspond-
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ing to the actual residence time.

The above is clearly a fairly elaborate procedure for computing the preshear, and it is

actually rather easier (and equivalent) just to vary Tres, and then to compute Tpre and l via

(25)–(26), finally choosing Tres so that the computed l value equals the required target

α (see also section 2.6.3). Remember also that preshearing can be avoided simply by

reducing the suspension flux Q, and even at high fluxes, one can elect to forego preshear

altogether (although the benefits of aggregate densification are not then realised, and

there may be sacrifices in the underflow solids fraction that is achieved).

3. Computational Methods

The numerical techniques employed for solving the equations presented above are very

simple and very standard ones (Press et al., 1992). For instance equations (19) and (22)

can be solved by Newton-Raphson, whereas minimisations and maximisations (such as

equations (17), (20), (21), (23), (25), (29), (30)) can be solved by applying Newton-

Raphson to function derivatives. If (very occasionally) Newton-Raphson fails to converge

to the correct root (owing to a poorly chosen initial guess) better initial guesses can be

readily obtained by graphing the function in question. Integrals such as (12), (16), (26),

(31) can be evaluated by quadrature.

4. Results of Thickener Design Computations

The results of thickener design computations are now presented, using the theories

and methods described above. Section 4.1 analyses plots of solids flux, whilst section 4.2

analyses profiles of solids fraction. Finally section 4.3 considers the various thickener

performance enhancements permitted by aggregate densification.

4.1. Analysis of plots of solids flux

In what follows the behaviour of solids flux vs solids fraction for three different sus-

pension fluxes (Q = 0.025, Q = 0.1 and Q = 0.2) is analysed. As will be made apparent,

these three distinct suspension fluxes are sufficient to highlight a variety of different types

of possible system behaviour.
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4.1.1. Solids flux when Q = 0.025

Figure 1(a) shows a plot of dimensionless solids flux Qs ≡ (Q+Ufs)φ vs solids fraction

φ for a suspension flux Q = 0.025 at various different instants of time T up to a total

residence time Tres = 4. This total residence time has been chosen large enough that

material at the bottom of the settling zone is nearly fully densified. Based on the ‘typical’

parameter values presented in the appendix, these data correspond to a dimensional

residence time of around 2000 s and a suspension flux around 2.5× 10−4 m s−1.

The operating solids fraction at the bottom of the settling zone corresponds to a

local minimum of the Qs vs φ curve when T = Tres (in this case φ = 0.298 with Qs =

0.00890). The underflow solids fraction φu can be obtained geometrically in the figure as

the intersection between a horizontal line at position Qs and the line with slope Q. It

turns out that φu = Qs/Q = 0.356.

At any instant of time T with 0 ≤ T ≤ Tres, the solids fraction in the hindered settling

zone can be read off from the graph, where it intersects the horizontal line at position Qs.

In order to maintain a dynamically stable configuration with less dense material above

more dense material, one must choose the solution branch for which φ increases moving

downwards through the hindered settling zone: the range of solids fractions specifically

for the case Q = 0.025 is indicated by the solid horizontal line in Figure 1(a).

4.1.2. Solids flux when Q = 0.1

Figure 1(b) is similar to the case discussed above, with the same residence time, but

a much larger dimensionless suspension flux value, i.e. Q = 0.1 (based on the ‘typical’

parameter values in the appendix, the dimensional suspension flux would be 10−3 m s−1).

The operating solids fraction at the bottom of the settling zone (again read off as the

minimum of the Q vs φ curve for the case T = Tres) is now smaller than before φ = 0.194,

as is the underflow solids fraction φu = 0.267, but the operating solids flux is larger

(Qs = 0.0267).

Now consider the other curves shown on the figure (i.e. those corresponding to the

undensified case and those for values of T less than Tres). Note that the chosen suspension

flux Q = 0.1 now corresponds to a comparatively ‘large’ value, in the sense that for a
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relatively small further increase (up to a critical value Qcrit, 0 = 0.148) the undensified

system would lose the local minimum (and maximum) in the Qs vs φ curve altogether.

Instead it would have an inflection point (at φ = 0.0870, the inflection point of the original

free settling flux curve), with Qs = 0.0246 at that point.

For Q = 0.1 then, the undensified system has a (local) minimum and a (local) max-

imum, but these are fairly shallow. Specifically if the process were run without any ag-

gregate densification whatsoever, the solids flux (corresponding to the shallow minimum)

turns out to be Qs = 0.0190 and the underflow solids fraction would become φ = 0.190.

The local minimum for the densified case gives better performance (Qs = 0.0267 and

φu = 0.267 as mentioned above). Nevertheless given the shallowness of the minima and

maxima here, maxφ≤φ(Tres)(Q + Ufs(φ, φagg,0))φ (the local maximum of the undensified

solids flux) is actually less than the target solids flux Qs (for the densified system).

This is precisely the scenario envisaged in equations (24) and (28) for which preshear

becomes relevant. It turns out that in order to exploit aggregate densification the required

preshear time in this case (with Q = 0.1 and Tres = 4.0) is Tpre = 0.872. Hence by

time T = 1 plotted in Figure 1(b), it is already possible to find a φ value satisfying

equation (22), and the range of φ values covered for T in the range Tpre ≤ T ≤ Tres is

indicated by the solid horizontal line in the figure.

Note that preshear only needs to be considered for comparatively largeQ values such as

Q = 0.1 here (it is never needed when Q = 0.025 for instance). Notice moreover that, even

for a large Q value, preshear is not needed when Tres is sufficiently small: the preshear

time as a function of Tres is plotted in Figure 2. Given that it was mentioned earlier

(section 2.10) that preshearing may involve some engineering challenges, it is important

to note in Figure 2 with Q = 0.1, preshearing is avoided for Tres less than about 0.4.

4.1.3. Solids flux when Q = 0.2

It is possible to increase Q still further above and beyond the value in Figure 1(b).

This is achieved in Figure 3 for a value Q = 0.2 (based on the ‘typical’ parameter values

in the appendix, the dimensional suspension flux would be 2× 10−3 m s−1). This Q value

can be considered to be ‘very large’ in the sense that, not only has the undensified flux
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curve lost its local minimum and maximum, but moreover the densified curves have also

lost their local minima and maxima.

Recall that the solids flux delivered by the thickener is given by a minimum on the

flux curve (see equation (17)), the minimum being sought in the domain φ ≥ φf (with

φf being the feed solids fraction). However, once the (local) minimum on the flux curve

is lost, the solution of equation (17) invariably occurs for φ = φf . The solids flux is said

to be (Dickinson and Galvin, 2013) no longer constrained by the shape of the flux curve

for φ > φf , but instead depends only on the conditions at the feed φf . For the sake of

illustration Figure 3 takes arbitrarily φf = 0.05, and the corresponding Qs (for a densified

system with Tres = 4) turns out to be 0.0343. The underflow solids fraction φu becomes

Qs/Q equal to 0.171 here.

It was discussed above with reference to Figure 1(a)–(b) how one could determine the

range of solids fractions encountered in the settling zone of a thickener in the presence

of aggregate densification. Specifically, given a Tres value and a corresponding Qs, one

needed to consider T values less than Tres, looking for φ values (at each T ) that delivered

the same Qs. An immediate problem can be seen by applying this same procedure to

Figure 3 however: the solids fraction φ would increase as T decreases. This corresponds to

a dynamically unstable situation for which more dense material is situated above less dense

material. It is not clear what would happen to the suspension under these circumstances.

The bed would presumably develop convective rolls which may enhance solids transport

and water removal. On the other hand, the rolls could promote mixing of low and high

solids fraction material which may be undesirable. Modelling these complex processes

would require a 2-D and/or 3-D formulation of suspension mechanics, more sophisticated

than the 1-D models considered here: this is beyond the scope of the present work.

For the Tres = 4 system considered here, the only way one could access a Qs value as

large as 0.0343 but avoid the above mentioned dynamically unstable configuration, is to

suppose that all the aggregate densification takes place in a preshear unit, with no further

aggregate densification taking place in the thickener itself. In other words Tpre = Tres = 4.

In engineering terms the task is no longer one of exploiting shear to improve operation of
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an existing thickener, but rather designing a completely new pretreatment or preshear unit

for the feed. This is considered to be outside the scope of this study: the main focus here

will be maintained on systems for which Q is small enough that the Qs vs φ curve permits

a local minimum (i.e. where the solids flux that is achieved is constrained (Dickinson and

Galvin, 2013) by the flux curve, and at least some aggregate densification is permitted to

take place in the thickener itself).

There is of course no physical difficulty in principle with using a suspension flux as high

as Q = 0.2, provided one operates in an undensified state and does not try to access solids

fluxes as high as the value 0.0343 mentioned above. Figure 3 shows a case of undensified

operation with φf = 0.05, Qs = 0.0261 and φu = Qs/Q = 0.130. This is an admissible

operating point for such a thickener, but (as a result of the high suspension flux Q), the

underflow solids fraction φu really is quite modest, and moreover no benefits of aggregate

densification whatsoever have been realised. Again such a regime is considered to be less

relevant to this work, where the focus will be instead on smaller Q values for which it is

feasible to exploit aggregate densification within the thickener to enhance performance.

4.2. Analysis of profiles of solids fraction

Profiles of solids fraction φ vs position Z (measured upwards from the bottom of the

settling zone), respectively for Q = 0.025 and Q = 0.1, are shown in Figure 4(a)–(b). It

must be emphasised that conventional Kynch theory predicts a fixed solids fraction in the

settling zone. Profiles of varying φ vs Z cannot be computed via conventional Kynch the-

ory, but can be predicted by the densified Kynch theory considered here. Notice moreover

that, even with densified Kynch theory, no corresponding profile could be computed in

the case of a much larger Q such as Q = 0.2, because (as discussed in section 4.1.3) such

a system has an operating solids fraction equal to the feed solids fraction. Hence only the

profiles for Q = 0.025 and Q = 0.1 are considered here.

For each Q, various values of solids residence time are considered Tres =
1
2
, 1, 2 and 4.

It is clear that increasing the solids residence time not only gives a larger solids fraction at

the bottom of the settling zone but also increases the (dimensionless) height l of that zone,

a fact which is corroborated by the summary data in Table 1. Note that (based on the
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‘typical’ parameter values reported in the appendix) one unit of dimensionless distance

corresponds to around 5 m dimensional distance, so the l values in Table 1 correspond

to a range of settling zone heights between 0.09 m and 3 m. The cases Q = 0.025 and

Q = 0.1 are now analysed in detail.

4.2.1. Settling zone height for Q = 0.025

Each doubling of Tres leads (according to Table 1) to roughly double the l value: this is

what one would expect from equation (12) since the integration range has been doubled.

Nevertheless, in the case Q = 0.025, doubling Tres at smaller values of Tres leads to slightly

more than double the settling zone height, as the integrand Ufs in equation (12) tends to

increase with aggregate densification. On the other hand, doubling Tres at larger values

of Tres leads to slightly less than double the zone height, because one starts to approach

at the bottom of the settling zone (see Figure 4(a)) comparatively large solids fractions in

the neighbourhood of φ = 0.30 for which settling speed Ufs becomes quite small (observe

that Ufs is a sharply decreasing function of φ).

4.2.2. Solids fraction profiles in the settling zone for Q = 0.025

In addition to the settling zone total heights, the detailed shapes of the curves of solids

fraction vs location in the settling zone (within Figure 4) are also of interest.

In all cases when Q = 0.025 in Figure 4(a), the most rapid spatial changes in the

solids fraction within the settling zone are seen towards the bottom of the settling zone:

this is a manifestation of finding the operating flux at the bottom of the settling zone via

a local minimum of the Qs vs φ curve.

The shape of the Tres = 4 curve is qualitatively different from the other curves at

smaller Tres. In particular the Tres = 4 curve displays an inflection point at which the

derivative dφ/dZ is a minimum. In engineering terms, this means that the settling zone

is gaining significant height without the benefit of much increase in the value of solids

fraction. According to equations (8)–(9), in the limit of large T , the value of φagg changes

comparatively little with T , so the implication from equation (19) is that φ(T ) likewise

changes comparatively little with T (or equivalently with Z). This is what produces the
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above mentioned inflection.

It was mentioned earlier that the Tres = 4 case in Figure 4(a) reaches a solids fraction

of nearly 0.30 at the bottom of the settling zone. At solids fractions this large however, it

is possible to query whether in a real suspension it is still valid to treat the suspension as

being Kynchian (as has been done here), or whether additional network stresses (which

are ignored here) might need to be taken into account (Buscall and White, 1987; Landman

and White, 1994). The study of Lester et al. (2005) for instance assumed an (undensified)

gel point at solids fraction 0.22. As the flocs densify, the gel point scales proportional to

D−3
agg. With theDagg,∞ value assumed here (namely 0.9), the gel point of the corresponding

fully densified system would be at a solids fraction of around 0.30. As noted earlier

(see section 2.3), this is material property dependent (Usher et al., 2013) and whereas

some suspensions reach a gel point for solids volume fractions even less than 0.1, other

coarser suspensions do not reach a gel point except for solids fractions in excess of 0.3.

The values of the gel point utilised here are thought to be typical of a range of mineral

suspensions (Gladman et al., 2006).

In the case studied here, the material at the bottom of the settling zone as indicated

in Figure 4(a) would be just barely approaching the point of forming an exceedingly weak

gel. Material higher up in the settling zone is certainly not gelled though: in Figure 4(a) in

the case Tres = 4.0, undensified material at the top of the settling zone is predicted to have

a solids fraction around 0.13, which is much less than the undensified gel point (solids

fraction 0.22). For comparison, the operating point of the corresponding undensified

thickener (still with Q = 0.025), which is indicated by a vertical line in Figure 4(a), itself

obtained via the local minimum of the corresponding undensified curve in Figure 1(a), is

actually a solids fraction of 0.21, which is likewise just less than the undensified gel point

(solids fraction 0.22).

It seems reasonable then to ignore gelation for these data, but one certainly could not

set the suspension flux Q much lower than the current value Q = 0.025 without explicitly

considering gelation, because lowering Q tends to increase solids fractions. Interestingly

Figure 4 shows that the range of solids fractions encountered in the settling zone of the
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densified thickener straddles the operating point of the undensified one (i.e. φ ∼ 0.21

as mentioned above): compared to the undensified case, densified system material is

predicted to be less concentrated higher up but more concentrated lower down. What

matters fundamentally to thickener performance however is the state at the bottom of the

settling zone, and the underflow solids fraction that this implies: based on that criterion,

aggregate densification can be shown to enhance performance (as will be considered in

detail later in section 4.3).

4.2.3. Jumps in solids fraction for Q = 0.025

Note that each case plotted in Figure 4(a) also shows a jump in solids fraction that

is permitted at the top of the settling zone. Such a jump comes about because the

system (and in particular the still undensified state at the top of the settling zone) allows

multiple possible values of φ for a given Qs. This is evident for instance in Figure 1(a)

(the specific case with total residence time Tres = 4). The solids fraction at the top of the

settling zone corresponds to a value around 0.13 (the left hand end of the solid horizontal

segment in Figure 1(a) that indicates the range of solids fractions permitted in the settling

zone), but the same flux can also be delivered with much smaller solids fraction of around

φ ∼ 0.01. One could in fact dilute the feed down to this solids fraction without affecting

the thickener solids throughput. The suspension would then be dilute between the top of

the solids fraction profile and some arbitrary feed point higher up. Because these dilute

states have such low solids fraction (around φ ∼ 0.01 as indicated in Figure 4(a)), the

solids move through the dilute zone very quickly. As a result, the solid aggregates incur

little densification whilst moving through the dilute zone, and it is justified to suppose

that the top of the solids fraction profile corresponds to a still undensified state (as has

been assumed here). The solids move much more slowly through and spend much more

time in the hindered settling zone, which is located underneath the dilute zone: therefore

much more densification is able to take place in the hindered settling zone than would

ever occur in the dilute zone.

In a similar fashion to what has been discussed above, the Qs vs φ curve for a system

with no aggregate densification whatsoever (also indicated in Figure 1(a)) likewise permits
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multiple solutions for φ at given Qs, and so permits a corresponding jump in solids fraction

from a dilute to a less dilute state, and this jump is also indicated in Figure 4(a) from

around φ ∼ 0.01 to φ ∼ 0.21. The jump is actually larger in the undensified case than

in the densified ones, but, in the densified cases, the solids fraction continues to increase

moving downwards through the settling zone, so at the bottom of the settling zone, the

solids fractions have reached higher levels for the densified systems.

4.2.4. Analysis of the settling zone for Q = 0.1

Now turn to the caseQ = 0.1 as presented in Figure 4(b). Operating without aggregate

densification is of course possible here, and again a jump in solids fraction is admitted (the

jump being indicated in Figure 4(b) from φ ∼ 0.032 to φ ∼ 0.135). As before however,

operational benefits are expected if aggregate densification occurs, and the solids fractions

at the bottom of the settling zone is seen to increase with Tres. The solids fractions

accessed all now appear to be well below the gel point. Notice however that the solids

fraction at the top of the settling zone now also increases with Tres, which is a contrast

from the case in Figure 4(a). The difference is due to the fact that exploiting aggregate

densification in the Q = 0.1 system in Figure 4(b) involves significant preshear which

permits increases in solids fraction even at the top of the hindered settling zone. Data on

preshearing times are presented in Table 1. Rapid spatial changes in solids fraction are

now seen both at the bottom and top of the settling zone: this is a manifestation of having

a local minimum of Qs vs φ at time Tres and a local maximum at time Tpre. A further

consequence of the Qs vs φ curve achieving a local maximum at time Tpre is that, at that

particular time, there is not any more dilute state that is able to deliver an equivalent

solids flux of presheared material. Hence in Figure 4(b), unlike Figure 4(a), for residence

times Tres = 1
2
, 1, 2 or 4, no jump in solids fraction is indicated between a more dilute

system and the top of the settling zone. These jumps do however reappear if the residence

time Tres is reduced sufficiently to eliminate preshear altogether: in particular they occur

(as mentioned above) for Tres → 0 which has no preshear (although the Tres → 0 system

also has no aggregate densification, and hence derives no benefit from the aggregate

densification process).
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It is also clear from Table 1 that with each doubling of Tres, the settling zone height

roughly doubles. For small Tres however, doubling Tres now leads (in the case Q = 0.1) to

slightly less than double the zone height. The reason is that in the presence of preshear,

zone height is computed via equation (26) rather than equation (12). The duration spent

in the settling zone Tres−Tpre may not quite double even though Tres does. At arbitrarily

large Tres however, Tpre saturates, at a value given by solving equation (12) but with

φagg,∞ replacing φagg(Tres) on the right hand side. Doubling Tres then more than doubles

the duration in the settling zone Tres−Tpre, and it is evident from Table 1 that (for larger

Tres) doubling Tres slightly more than doubles zone height l.

4.2.5. Generalisation to a conical-shaped thickener

Figure 1 and Figure 4 have both been obtained for the case of a suspension in a

straight-sided thickener, where Q and Qs are spatially uniform. Here, for completeness,

it is explained how one could generalise this to the case of a conical shaped-thickener

(although, for the sake of brevity, no results for that case will be presented). In a conical

thickener, Q and Qs would vary inversely with the thickener cross-section. Equation (11)

relates the position in the thickener Z to the time in the settling zone T , and hence, for a

conical thickener, relates the position-dependent Q and Qs to time T . One could generate

settling flux curves analogous to those in Figure 1 albeit now with different Q for each

T , and read off the φ values that deliver the required Qs (which now also varies with T ):

thus φ vs T and hence φ vs Z profiles could be generated analogous to Figure 4. The

main difficulty here is that Q and Qs are most readily expressed in terms of Z, whereas

Ufs (which appears in equation (11)) involves φagg, which is most readily expressed in

terms of T . For the straight-sided thickener, the right hand side of equation (11) could be

determined at any T without knowing Z in advance. For the conical thickener however,

that right hand side can only be evaluated as the equation itself for Z vs T is solved.

4.3. Performance enhancements due to aggregate densification

Densifying a suspension via raking should enhance thickening performance. There

are however various different ways of quantifying this performance enhancement as is
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explained in the sections to follow.

4.3.1. Varying shear residence time Tres at fixed suspension flux Q

One way of representing the performance enhancement due to aggregate densification

is shown in Figure 5. Specifically for the suspension fluxes Q = 0.025 and Q = 0.1

considered above, the figure plots the underflow solids fraction φu vs Tres. In each case

φu in the large Tres limit is about 40% higher than for the undensified case. This 40%

enhancement is of course particular to the floc diameter ratio Dagg,∞ = 0.9 considered

here: smaller values of Dagg,∞ would permit even greater enhancements.

4.3.2. Varying shear residence time Tres at fixed underflow solids fraction

Alternatively one can compute the performance enhancements not at fixed Q, but

rather, using equation (20), at fixed underflow solids fraction φu. This is particularly

relevant since many thickeners operate to a fixed rake torque. At underflow concentrations

well above from the gel point, this is often a fixed solids fraction for any one material

that has a given level of flocculation. The yield stress of such suspensions shows a strong

correlation to rake torque (Rudman et al., 2008). At underflow concentrations close to the

gel point, the behaviour is more subtle, especially in light of the changes to the gel point

as a result of aggregate densification. Data are presented in Figure 6 for values φu = 0.25

and φu = 0.35 (although note a former reservation – see section 4.2.2 – regarding whether

it is always appropriate to ignore suspension network stresses in the latter case, as a gel

may be on the point of forming in the settling zone).

For φu = 0.25, the (nearly) fully densified case at Tres = 4 has a Qs roughly 4 times

that of the undensified case. For φu = 0.35 the relative increase in Qs (undensified to

fully densified) is 13 times, although the undensified case now starts from an exceedingly

small solids flux (see Figure 6). The result is that the fully densified Qs for φu = 0.35

is, in order of magnitude terms, comparable with the undensified Qs for φu = 0.25, with

only around 30% difference between them. Again these results are of course particular to

the value Dagg,∞ = 0.9 assumed here: even smaller Dagg,∞ would enhance yet more the

densified performance.
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4.3.3. Solids fraction Qs vs underflow solids fraction φu for various Tres

Results of thickener models are often presented (Usher and Scales, 2005) via a graph

of Qs vs φu. In Figure 7 such a plot is shown.

Focus first on the undensified case: two branches of solutions are shown in Figure 7(a).

One is a low solids flux and high underflow solids fraction branch, and corresponds to

finding a local minimum of the solids flux vs solids fraction curve via the undensified

analogue of equation (17). The other is a high solids flux and low underflow solids fraction

branch, and corresponds to finding the minimum of equation (17) at the feed solids fraction

φf . Here φf has been taken arbitrarily to have the value 0.05. The first branch of solutions

is said to be constrained by the shape of the flux curve, and the second branch is said to

be unconstrained (Dickinson and Galvin, 2013).

As solids flux is increased, the system follows initially the first branch, but then

switches to the second branch at the point where the two branches intersect. It is clear

from the shape of the curves, that when the second branch is attained, the system starts to

sacrifice significantly the underflow solids flux that can be achieved. Delaying the switch

to the second branch (if possible) is desirable. It turns out that the branch intersection

point is actually sensitive to the value of φf . For an appropriately chosen ‘optimal’ φf

value, the furthest possible that one can move along the first branch is to the point where

the solids flux vs solids fraction curve ceases to have a local minimum and maximum2, be-

yond which that particular branch ceases to exist, and the thickener is invariably operated

at the feed solids fraction (rather than at a locally minimum flux).

The above discussion has concerned the undensified case. A similar picture arises

for densified systems at different values of the shear residence time Tres (undensified,

Tres = 1
2
, 1 and 2, as well as the fully densified case). As Tres increases, the graphs are

shifted upwards and to the right. This is indicative of a performance enhancement.

For each Tres again there are two branches of solutions: a constrained and an uncon-

strained branch analogous to those discussed above. The unconstrained branches with

2Moving along the branch all the way to this end point requires that the feed solids fraction matches
the inflection point on the original free settling flux curve. As mentioned in section 4.1.2, this is a solids
fraction of 0.0870 in the undensified case.
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non-zero Tres are of limited interest here, because they actually require all the aggregate

densification to have occurred via preshear, with no further aggregate densification in the

thickener itself. Otherwise these branches would imply dynamically unstable conditions,

with more dense material above less dense material (see also sections 4.1.1 and 4.1.3). If

no aggregate densification takes place in the thickener itself (but instead only in an up-

stream preshear unit), one is no longer trying to improve the operation of a thickener per

se, but instead is designing a pretreatment process for the feed: this falls beyond the scope

of the present discussion, and may entail considerable engineering challenges. For present

purposes, it is expected that whenever the unconstrained operation branch is accessed,

that would mostly likely occur without the benefit of any aggregate densification.

The focus here therefore is on the constrained branch with various non-zero Tres. This

is shown in detail in Figure 7(b). Note that most of the data presented (i.e. all of those

below Qs ≈ 0.02) now do not involve preshear. The critical solids fluxes Qs for preshear

are indicated in the figure and seem to be only very weakly sensitive to Tres (except of

course in the limit Tres → 0, where preshear is never required, but where no aggregate

densification occurs either, and hence no benefit of aggregate densification is ever realised).

For each Tres the value of Qs corresponding to the point at which the Qs vs φ curve

loses its local maximum and minimum is also indicated. As discussed above, this is the

point at which the system ceases to be constrained by the flux curve (Dickinson and

Galvin, 2013) even for an ‘optimally’ chosen feed solids fraction. Once this level of solids

flux is attained all the aggregate densification occurring is achieved via the preshear, with

no further aggregate densification taking place in the thickener itself (i.e. the preshear

time equates to the total residence time in the shear field). Moreover, even though yet

higher values of solids flux can in principle be accessed by switching the solution branch,

this could possibly entail (again as discussed above) foregoing the benefits of aggregate

densification altogether.

4.3.4. Solids fraction Qs vs underflow solids fraction φu for various α or l

Recall (from section 2.6) that there were two ways to formulate the densified thickener

problem: in one formulation there was a fixed extent of aggregate densification (i.e. given
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Tres) but the dimensionless settling zone height was allowed to vary (i.e. variable l).

In the second formulation a densification rate parameter α was fixed, but time in the

settling zone was allowed to vary in order to meet a constraint on the settling zone height

(equations (16) or (31)). This of course presupposes that a settling zone height is well

defined by the model, which (out of the two solutions branches discussed in section 4.3.3)

is only true for the so called constrained branch. Subject to this condition, remember

however that both formulations were equivalent. Thus using the first formulation, one

could vary Tres and thereby vary l until the computed value of l equalled the target α

value given in the second formulation.

A look up table of Qs vs φu has therefore been generated for a large number of

possible Tres values, and data have been interpolated between different Tres values to

generate performance curves at fixed α. These are plotted on Figure 8 for a variety of α

values between α = 0.02 and α = 0.2. Physically comparing different α corresponds to

considering different rates of raking a suspension (for a suspension of a given height) or

equivalently considering suspensions of differing heights (at a given rate of raking). For

the ‘typical’ parameter values discussed in the appendix, the range of values α = 0.02

through α = 0.2 would correspond to settling zone heights between 0.1 m and 1 m.

In Figure 8, focus first on Qs values below Qs ≈ 0.02 for which it is known that

the system benefits from aggregate densification even without preshear. It is clear that

in this regime increasing φu or equivalently decreasing Q leads to data migrating from

the neighbourhood of the undensified curve Tres → 0 to the neighbourhood of the fully

densified one Tres → ∞.

This can also be seen from equation (16). Increasing φu (and hence increasing φ) leads

to decreases in Ufs, whilst decreasing Qs (which accompanies increases in φu) correlates

with decreasing Q. Hence the integrand of equation (16) decreases as φu increases, so the

integration range must grow to compensate: τres and Tres ≡ ατres both grow, hence the

observed migration towards the fully densified case. Physically this merely demonstrates

that systems with lower solids velocity require more time to cover a given distance.

Now consider Qs values above Qs ≈ 0.02. Preshear can now be utilised to access solids
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fluxes higher than the maximum value ‘accessible’ to the undensified system3 (value quoted

previously in section 4.1.2 as Qs = 0.0246). Accessing this higher solids flux regime is an

operational option for thickeners operating with an underflow solids at or about the gel

point and although classical Kynchian theory would disallow such a move, the aggregate

densification approach shows why many operational thickeners indeed derive a benefit.

The more that Qs is increased above the above mentioned level, the more preshear

should occur4. However since total residence time τres must be at least as high as preshear

time τpre, it is clear that increasing Qs now requires τres to increase. As Qs increases

towards the maximum permitted solids flux for a fully densified state on the solution

branch in question (which can be shown to be Qs = 0.0375 with a corresponding underflow

solids fraction φu = 0.228) all the curves on Figure 8 with different values of α converge on

the same point. In this maximum permitted Qs limiting case, the constraint equation (31)

now applies, but the integrand of that equation approaches a constant fully densified value,

with the result that τres−τpre is likewise constant. It is convenient at this point to change

variables. Recognising that Tres = ατres and Tpre = ατpre and α = l, it is possible to

deduce that the time spent in the hindered settling zone Tres−Tpre is directly proportional

to zone height l, but increases in l have no bearing on the system performance (i.e. no

bearing on Qs or φu). In other words if the system is presheared to near full densification,

there is little point in having a tall thickener (at least in this ungelled system where

network stresses are ignored).

5. Discussion

This work has performed a modelling study of the thickening behaviour of an ungelled

‘Kynchian’ suspension (i.e. one without compressive network forces), a model that would

3Specifically this maximum ‘accessible’ value refers to the highest solids flux that would be permitted
for operation that is constrained (Dickinson and Galvin, 2013) by the shape of the flux curve (see also
sections 4.1.3 and 4.3.3). Such operation gives robust control of the solids flux delivered in case of any
fluctuations in solids fraction (see section 2.7).

4Note that the formal limit α → 0 corresponds to no densification when Qs < 0.0246, but for
Qs > 0.0246 corresponds instead to preshear time equal to total residence time in the shear field, as
is obvious from considering the integration limits in equation (26) remembering the equivalence between
the parameter l in equation (26) and the parameter α.
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be permissible only for suspensions with comparatively low solids fractions. The model

has treated steady state thickening (in the Eulerian sense), but has included the effect

of flocs within the suspension being subjected to the shearing action of rakes and, as

a result, becoming densified over time (in the Lagrangian sense). The model has been

applied to study the behaviour of a straight-sided thickener, although can be generalised

to a conical-shaped thickener without too much additional difficulty.

A model for floc densification previously employed in the literature (Usher et al., 2009;

van Deventer et al., 2011; Zhang et al., 2013a,b) has been used. Surprisingly (given the

fact that the model in question tends to predict significant benefits of floc densification

for comparatively low solids fractions) it has typically previously been used to study

thickening of higher solids fraction gelled/networked suspensions, not lower solids fraction

Kynchian ones as are considered here.

The aggregate densification model employed here provides more information than

standard (undensified) theories for thickening of Kynchian suspensions: in particular it

predicts settling zone heights and profiles of varying solids fraction vs position in the

settling zone. These heights and profiles are most readily obtained by specifying the

state of the suspension at the bottom of the settling zone (at which the greatest amount

of aggregate densification has taken place) and then computing the various suspension

states above this, maintaining a spatially uniform solids flux.

Significant performance enhancements of thickeners due to aggregate densification are

predicted, for instance a 40% increase in underflow solids volume fraction (for a given

suspension throughput) or increases in solids fluxes by a factor between 4 and 13 (for a

given underflow solids volume fraction). Such performance improvements however come

at the cost of an increase in the settling zone height, as residence times in the settling zone

must be longer. These performance enhancements are also sensitive to the densification

parameters employed, in particular to the ratio between the diameters of fully densified

flocs and undensified flocs (the fully densified state being defined here as the point at

which the floc diameter ceases to change with time). As this diameter ratio decreases,

the predicted performance enhancement would increase still further.
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Moreover solids fluxes ‘unattainable’ by undensified systems5 can be attained using

densified ones, although these may involve some preshearing upstream of the thickener

feed, with the total residence time spent in the shear field being measured as the sum of

the preshearing time and the time in the settling zone. It is even possible to contemplate

a very high flux situation which can still benefit from aggregate densification, provided

the aggregate densification taking place during preshear totally dominates any subsequent

aggregate densification occurring in the thickener itself: this however is considered to be

outside the scope of the present study as it involves exclusively pretreatment options for

the thickener feed, rather than improvement of thickener performance per se.

If one is willing to forego any operational benefits from aggregate densification, then

it is possible to operate a thickener at any solids flux without preshear. If one wants

to exploit aggregate densification however, the requirement or otherwise for preshearing

is determined primarily by the target solids flux, with just a very weak dependence on

the residence time in the shear field itself. Indeed preshear can always be avoided if the

solids flux is set sufficiently low. Given that the requirement for even modest amounts of

preshear may present engineering challenges (particularly if it involves retrofitting onto

an existing thickener design) identifying the parameter domain for which preshear can be

avoided is useful.

Regardless of whether the system is (or is not) presheared, performance curves can be

plotted for solids flux Qs vs underflow solids fraction φu. These curves can be parame-

terised by the extent of aggregate densification (or analogously by the residence time for

which the system is subject to densification), varying from the undensified state through

to the fully densified one.

It is more straightforward however to represent the curves using a densification rate

parameter (for a fixed settling zone height) or a settling zone height parameter (for a given

densification rate). When cast in dimensionless form, these two parameters become the

5‘Unattainable’ here should be taken to mean unattainable to systems that are operated in a state
that is constrained by the shape of the flux curve for solids fractions in excess of the feed solids fraction.
Accessing higher solids fluxes remains possible but involves, not only sacrifices in underflow solids fraction,
but also loss of robustness of the solids flux delivered in the event of any fluctuations in solids fraction.
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same. For a fixed value of this (dimensionless) rate parameter, as the target solids frac-

tion φu grows (and hence the solids flux Qs falls), the solids velocities also fall, and hence

the time required to cover a given settling height must grow. The extent of aggregate

densification (which is determined by the product between the aforementioned dimension-

less rate parameter and the dimensionless settling time) then grows: the system migrates

from a nearly undensified state to a nearly fully densified one. This migration occurs more

readily for taller settling zones, and/or for systems that are raked/sheared more rapidly,

although the raking must not be so rapid as to tear aggregates apart altogether.

However towards the upper end of the flux regime of interest the system makes the

same transition as Qs grows. This is the result of increasing amounts of preshear being

imposed in order to exploit the benefits of aggregate densification. Moreover in the

limit of sufficiently large fluxes, the thickener performance becomes independent of the

densification rate parameter (or equivalently the settling zone height parameter) since the

suspension then must be presheared almost to full densification even before entering the

thickener, or in another way of thinking, the benefits of aggregate densification cannot

be realised in a conventional thickener (without some significant redesign to achieve the

necessary preshear).

It is important to recall the restriction that the ‘Kynchian’ model considered here

only treats the case of suspensions at low enough solids fraction such that they do not

form a weight bearing gel, otherwise more complex theories of thickening with aggregate

densification are required, as have been studied elsewhere (Usher et al., 2009; Zhang

et al., 2013a,b). Nonetheless, in some of the computations presented here, particularly

those where solids fluxes are far below the level at which preshear would ever be imposed,

solids fraction towards the bottom of the settling zone in a densified thickener, just barely

approaches levels comparable with the densified gel point. Any further reductions in

solids flux (which tend to be accompanied by increases in solids fraction) would certainly

demand theories that account for gelled suspensions. The presence of a gelled network

which tends to resist compression will likely cause the dewatering performance achieved

to be less good than what has been predicted here for an unnetworked material in the
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absence of any compressional hindrance.

6. Conclusions

This work has discussed how the mathematical description of suspensions at low solids

fraction differs from that of suspensions at higher solids fraction: at higher solids fraction

suspensions tend to form a gel which can support compressive stresses (Buscall and White,

1987). Lower solids fraction suspensions are not gelled, and do not exhibit compressive

stresses. Instead their rheology is normally modelled very simply via so called Kynch

theory (Kynch, 1952) which employs a relation that describes how much flocs or aggregates

in the suspension hinder the settling of neighbouring flocs. The more that flocs hinder

the settling of their neighbours, the more difficult a given suspension becomes to dewater.

Kynch theory for ungelled suspensions (and extensions thereof that incorporate com-

pressive stress terms for higher solids fraction gelled suspensions) can be used for engineer-

ing design of dewatering equipment. One of the simplest types of equipment to design is a

so called continuous thickener, in which suspension is fed into the device, with clear water

being drawn off the top, and thickened material (with a solids fraction greater than that

of the feed) being drawn off the bottom. Indeed the operation of a thickener (Talmage and

Fitch, 1955) is very easy to predict in the context of Kynch theory (and/or generalisations

thereof that incorporate compressive stresses if required (Usher and Scales, 2005)). One

specifies a suspension flux solids through the thickener, and the theory predicts the solids

flux achieved and the underflow solids fraction at the bottom. Invariably a trade off is

found between the solids flux and the underflow solids fraction: a high suspension flux

permits a high solids flux but leads to a comparatively modest underflow solids fraction,

whereas a lower suspension flux gives a lower solids flux but a higher solids fraction out

the bottom.

Conventional Kynch theory however does not account for the fact that the microstruc-

ture of flocs is not necessarily fixed, but instead can evolve over time. In particular raking

a suspension may induce changes in floc structure: specifically aggregates densify, i.e. be-

come more compact, under the shearing action of rakes (Usher et al., 2009). Densification
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of individual aggregates opens up wider channels between aggregates, thereby facilitating

the escape of water from the suspension. Thus the state of a suspension and its dewat-

erability depend not only upon the solids fraction, but also upon the extent of aggregate

densification. This tends to produce a very significant effect: even a modest increase in the

width of channels between aggregates can enhance dewatering rates dramatically (Usher

et al., 2009).

Relations are available between the extent of aggregate densification and residence

time in the shear field within a raked suspension (Usher et al., 2009; van Deventer et al.,

2011). Hence dewaterability becomes a function of solids fraction and residence time in

the shear field. The aim of the present work therefore has been to redo thickener design

calculations using a modified Kynch theory that accounts explicitly for residence time in

a raked thickener.

The most important finding is that dramatic increases in thickener performance are

possible. The performance enhancement is most simply expressed via a graph of the solids

flux vs the solids fraction in the underflow of the thickener: as residence time increases,

the graph is pushed towards higher solids fluxes and higher solids fractions.

The next most important finding is that the modified Kynch theory presented here

predicts a profile of solids fraction vs position in the thickener, and hence makes predic-

tions for the thickener height required to attain a prescribed underflow solids fraction.

This is a surprising outcome because conventional Kynch theory in the absence of aggre-

gate densification makes no such predictions: it determines an operating solids fraction

within the thickener, but not a solids fraction profile, and does not specify any thickener

height requirement.

Interestingly generalisations of Kynch theory taking account of compressive effects in

gelled suspensions (but without necessarily invoking aggregate densification) do predict

solids fraction profiles and thickener height requirements (Usher and Scales, 2005). Those

predictions are however associated with the gradients of solids fraction needed to achieve

the gradients of compressive stress that produce an overall force balance. The mechanism

for predicting a solids fraction profile and hence thickener height requirement is however
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rather different in the case that has been studied here of a Kynchian i.e. ungelled suspen-

sion subject to aggregate densification. In that case, different points in the thickener have

different residence times (and hence different extents of aggregate densification). This

in turn implies that a given solids flux through the thickener is actually achieved with a

profile of solids fraction which is not uniform across the settling zone.
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Appendix

In section 2.6 various different characteristic velocity, length and time scales relevant

to suspension thickening were considered. Here it is quantified what those scales imply

for a ‘typical’ suspension.

A floc of assumed radius 100 microns, with an assumed average density 50% higher

than that of surrounding water settles (in the absence of any other flocs) according to

Stokes settling law (see e.g. Batchelor (1967)) at a speed uStokes of roughly 10−2 m s−1, as-

suming the surrounding water has centipoise viscosity. This ‘unhindered’ speed 10−2 m s−1

is however probably an overestimate of the true settling speed in a suspension, given that

at a solids fraction φ of around 0.2, equations (1)–(2) (with the chosen exponent N = 20)

predict batch settling speeds around 100 times lower than the Stokes speed, and even at

a solids fraction of around 0.1, batch settling speed is still 10 times slower than Stokes.

At any given solids fraction, thickening of course proceeds faster than batch settling (ow-

ing to the addition of the suspension flux) but even for the case of a ‘large’ Q (e.g. the

undensified critical value Qcrit, 0 = 0.148 mentioned in section 4.1.2), it can be shown that
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the total solids speed is just barely double the batch settling speed (at the corresponding

operating solids fraction).

Now turn to time and length scales. The work of van Deventer et al. (2011) considered

values of the rate parameter A up to 10−2 s−1, but finds a best fit to data with an A value

around 2×10−3 s−1. The corresponding time scale A−1 is 500 s. The characteristic length

scale uStokes/A meanwhile is on the order of about 5 m. It would however be rare to find a

thickener as tall as uStokes/A given (as mentioned above) that hindered settling speeds at

solids fractions typically encountered in thickening are substantially lower than uStokes. In

other words, the ratio l between the settling zone height L and the characteristic length

scale uStokes/A will normally be rather less than unity.

Recall from section 2.6.3 however that this ratio could be identified with the parameter

α ≡ AL/uStokes, as considered in Figure 8. The range of α values considered in Figure 8

is in fact α = 0.02 through α = 0.2. If uStokes/A is roughly 5 m (as above), the data in

this figure correspond to settling zone heights between 0.1 m and 1 m.

Nomenclature

A densification rate parameter

Dagg diameter ratio between densified and undensified flocs; a function of time

Dagg,∞ diameter ratio between fully densified and undensified flocs (here Dagg,∞ = 0.9)

L settling zone height in thickener

l dimensionless settling zone height

N exponent in the hindered settling factor formula (here N = 20)

q suspension flux

Q dimensionless suspension flux

Qs dimensionless solids flux

Qcrit, 0 a critical suspension flux at which the undensified solids flux curve loses its local

minimum and maximum

r hindered settling factor

r0 hindered settling factor in undensified system

t time

tres residence time in the shear field
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T dimensionless time

Tres dimensionless residence time in the shear field (in the absence of any preshear, this

is also the same as the time spent in the thickener settling zone)

Tpre dimensionless preshear time

ufs floc ‘free settling’ speed; a function of solids fraction

Ufs dimensionless floc free settling speed

uStokes Stokes settling speed for an isolated floc

z vertical coordinate

Z dimensionless vertical coordinate

α dimensionless densification rate parameter

αcrit a critical densification rate that separates systems that involve preshear from those

that do not; a function of suspension flux

ζ dimensionless vertical coordinate (in an alternate scaling)

τ dimensionless time (in an alternate scaling)

τres dimensionless residence time in the shear field (in an alternate scaling)

τres,0 dimensionless residence time that would apply to an undensified system

τres,∞ dimensionless residence time that would apply to a fully densified system

τres, crit a critical residence time that occurs when the densification rate is αcrit; a function

of suspension flux

τpre dimensionless preshear time (in an alternate scaling)

φ solids fraction

φagg solids fraction within aggregates; a function of time

φagg, 0 solids fraction within undensified aggregates

φagg,∞ solids fraction within fully densified aggregates

φ∞ operating solids fraction of a fully densified thickener

φf feed solids fraction

φu underflow solids fraction
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Q = 0.25
Tres l

1
2

0.0188
1 0.0404
2 0.0832
4 0.1568

Q = 0.1
Tres Tpre l

1
2

0.0459 0.0984
1 0.3049 0.1498
2 0.6449 0.2823
4 0.8727 0.5928

Table 1: Computed dimensionless settling zone heights l vs dimensionless solids residence time in the
shear field Tres for suspension flux Q = 0.025 and Q = 0.1. In the case Q = 0.1, preshearing occurs
before entering the settling zone: the dimensionless preshear time Tpre is also reported. For ‘typical’
parameter values presented in the appendix, one dimensionless flux unit corresponds to 10−2 m s−1, one
dimensionless time unit corresponds to 500 s, and one dimensionless height unit corresponds to 5 m.
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Figure 1: Solids flux Qs ≡ (Q+Ufs)φ vs solids fraction φ at various different densification times T up to
a total residence time Tres = 4, (a): small suspension flux Q = 0.025; (b): comparatively large suspension
flux Q = 0.10. For comparison, the critical suspension flux at which the solids flux loses its local minimum
with respect to solids fraction (in the undensified case) is Qcrit, 0 = 0.148. The range of solids fractions
encountered in the thickener settling zone is indicated by the solid horizontal line (specifically where the
flux curve for each T value intersects that line), whilst the underflow solids fraction φu is also labelled.
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Figure 2: The preshearing time Tpre as a function of the residence time Tres in the case where suspension
flux Q = 0.1.
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Figure 3: Solids flux Qs ≡ (Q + Ufs)φ vs solids fraction φ for a system with residence time Tres = 4, at
various densification times T , specifically T → 0 (the undensified state), T = 1 and T = Tres = 4. The
suspension flux Q is chosen sufficiently large (Q = 0.2) that the flux curves do not exhibit local minima.
The feed solids fraction is chosen as φf = 0.05 and this determines the solids flux (Qs = 0.0343 here with
Tres = 4). The underflow solids fraction φu is determined as the ratio Qs/Q (geometrically this is the
right hand end of the solid horizontal segment shown on the graph; φu = 0.171 here). For undensified
operation at the same feed solids fraction, a lesser solids flux (Qs = 0.0261) and a correspondingly lesser
underflow solids fraction (the right hand end of the dashed horizontal segment; φu = 0.130) are obtained.
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Figure 4: Profile of solids fraction φ vs dimensionless vertical coordinate Z in the case where (a) suspension
flux Q = 0.025 and (b) suspension flux Q = 0.1, for various residence times in the shear field Tres =

1

2
, 1,

2 and 4. Note that for ‘typical’ parameter values presented in the appendix, one dimensionless height unit
corresponds to 5 m. In each case plotted, the φ vs Z profile is indicated by a thick curve. However in (a)
(albeit not (b)), it is permitted to have a jump in solids fraction from an exceedingly dilute value to the
solids fraction corresponding to the top of the profile: these jumps are indicated by the thin horizontal
lines extending from the top of each φ vs Z profile. The vertical solid line (in both cases (a) and (b))
indicates the (uniform) solids fraction operating point that would be computed in an undensified system
with the same suspension flux Q (albeit a lower Qs). With undensified operation, again a jump is possible
from an exceedingly dilute state (the vertical dashed line in each case).
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Figure 5: Underflow solids flux φu vs residence time Tres in the shear field for two different suspension
fluxes Q = 0.025 and Q = 0.1. The symbol × in the Q = 0.1 case separates systems without preshear
from those for which preshear occurs.

54



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.5  1  1.5  2  2.5  3  3.5  4

Q
s

Tres

+

φu=0.25
φu=0.35

Figure 6: Solids flux Qs vs residence time Tres in the shear field for two different underflow solids fractions
φu = 0.25 and φu = 0.35. The symbol + in the φu = 0.25 case separates systems that do not involve
preshear from those that do.
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Figure 7: Predictions of the thickener model for solids flux Qs vs underflow solids fraction φu. Data are
shown for the undensified case and for the fully densified case, as well as at various (finite) residence
times Tres =

1

2
, 1 and 2. (a) Two branches of solutions are shown: one at lower solids fluxes and higher

underflow solids fractions (the situation for which the corresponding solids flux vs solids fraction curve has
a local minimum and maximum, so that operation is constrained by the shape of the flux curve (Dickinson
and Galvin, 2013)) and one at higher solids fluxes and lower solids fraction (the thickener operates at
the feed solids fraction (taken to be φf = 0.05 here), but is not constrained by the shape of the flux
curve at any other solids fraction). (b) Detailed view of the constrained branch. The symbols × separate
systems without preshear from those for which preshear occurs. Meanwhile the symbols + indicate the
limit at which the solids flux curve ceases to have a local minimum and maximum. In order to benefit
from aggregate densification at these latter points, all the aggregate densification must take place in the
form of preshear, with no further aggregate densification in the thickener itself.
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Figure 8: (a) Predictions of the thickener model for dimensionless solids flux Qs vs underflow solids
fraction φu for the undensified case and for the fully densified case, as well as at various values of the
dimensionless densification rate parameter α (α = 0.02, 0.05, 0.1 and 0.2). Note that physically, different
α values correspond to varying the densification rate (at fixed height of the settling zone) or else to varying
the height of the settling zone (at fixed densification rate): for ‘typical’ parameter values presented in the
appendix, α = 0.02 corresponds to a zone height 0.1 m, whilst α = 0.2 corresponds to a zone height 1 m.
The symbols + correspond to the points at which the solids flux curve ceases to have a local minimum
and maximum. At these points, all the aggregate densification is realised via preshear, with no additional
aggregate densification occurring in the thickener itself. As a result, these points (like the undensified
case itself) correspond formally to the limit α → 0. (b) A zoomed view of the upper right hand corner
of the upper figure.
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