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We consider the steady two-dimensional thin-film version of a problem concerning a

weightless non-isothermal free fluid film subject to thermocapillarity, proposed and

analysed by Pukhnachev and co-workers. Specifically, we extend and correct the paper

by Karabut and Pukhnachev (J. App. Mech. Tech. Phys. 49, 568–579, 2008), in which

the problem is solved numerically, and in which it is claimed that there exists a unique

solution for any value of a prescribed heat-flux parameter in the model. We present

a closed-form (parametric) solution of the problem, and from this show that, on the

contrary, solutions exist only when the heat-flux parameter is less than a critical value

found numerically by Karabut and Pukhnachev, and that when this condition is satisfied

there are in fact two solutions, one of which recovers that obtained numerically by

Karabut and Pukhnachev, the other being new.
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1 Problem statement

In a series of papers Pukhnachev2 and co-workers (Pukhnachov [13], Pukhnachev & Du-

binkina [15], Pukhnachev [14] and Karabut & Pukhnachev [8]), motivated by the behaviour

of free films of fluid in foams, proposed and analysed a model of a weightless non-isothermal

film of incompressible viscous fluid that spans a hollow cylinder on which a heat-flux distri-

bution is prescribed, the upper and lower surfaces of the film being free. The film is subject

to thermocapillarity, the surface tension of the fluid being taken to vary linearly with tem-

perature (but with its density, viscosity and thermal conductivity taken to be constants).

A flow is therefore generated within the film, the energy of the flow being supplied by the

prescribed heat input/output at the cylindrical boundary.

In particular, Pukhnachev and co-workers considered the situation in which the film

is thin, with thickness much less than a typical diameter of the cylinder, and in which

the appropriate reduced Reynolds and Péclet numbers are small, so that the lubrication

approximation may be used. The cylinder, which may in general be of arbitrary cross-

section, is taken to have generators in the z direction referred to Cartesian coordinates

Oxyz, and the film is taken to be symmetric about the plane z = 0, with its upper and

lower free surfaces at z = ±h(x, y, t), where t denotes time. Interestingly, as Pukhnachev [14]

described, within the framework of the thin-film model (and very differently from flows of

1Author for correspondence.
2This author’s name has been transliterated into English as both Pukhnachev and Pukhnachov.
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thin films in contact with solid substrates), the shape of the free surfaces of the film may

be determined without detailed knowledge of the dependence of the fluid velocity on z.

Pukhnachev [14] showed that in the case when the upper and lower free surfaces are

thermally insulated (his “Problem B”) and the flow is steady the non-dimensional problem

for the thickness 2h and depth-averaged temperature T (x, y) of the film reduces to the

system

∇ · (h∇∇2h) = γ∇2T, ∇ · (h∇T ) = 0 in Ω, (1.1)

to be solved subject to the boundary conditions

∂h

∂n
= 0, h

∂∇2h

∂n
= γ

∂T

∂n
, h

∂T

∂n
= g on ∂Ω, (1.2)

the prescribed-volume condition ∫∫

Ω

hdS = V, (1.3)

and a normalisation condition ∫∫

Ω

T dS = 0, (1.4)

where Ω denotes the interior of the cross-section of the cylindrical boundary in the plane

z = 0, ∂Ω denotes the plane curve that bounds Ω, ∇ denotes the two-dimensional gradient

in Ω, ∂/∂n denotes differentiation in the direction of the normal to ∂Ω outward from the

cylinder, V is the volume of fluid in the film, γ (> 0) is an effective Marangoni number,

and g is a prescribed function which is subject to the compatibility condition
∫

∂Ω
g dℓ = 0, (1.5)

ℓ denoting arc length along ∂Ω. In (1.2)1 the contact angle of the fluid where the free

surfaces meet the cylindrical boundary has been taken to be π/2.

As Pukhnachev [14] described, in the case when the cylindrical boundary comprises the

planes x = 0 and x = 1 (so that Ω is the infinite strip 0 ≤ x ≤ 1, z = 0, and ∂Ω reduces

to the lines x = 0, z = 0 and x = 1, z = 0), and the function g in (1.2) is a constant

heat-flux parameter −q on x = 0 and +q on x = 1, the problem becomes two-dimensional,

with both h and T independent of y, and with the fluid film occupying −h(x) ≤ z ≤ h(x)

for 0 ≤ x ≤ 1. Figure 1 shows a sketch of the geometry in the x,z plane in this case; it is

this two-dimensional version of the problem that we consider in the present study. In that

case one integration of each of the equations in (1.1) subject to (1.2) leads to

hh′′′ = γT ′, hT ′ = q, x ∈ (0, 1), (1.6)

where a prime denotes differentiation with respect to argument. Thus the free-surface

profiles z = ±h(x) satisfy

h2h′′′ = −b, x ∈ (0, 1) (1.7)

h′(0) = 0, h′(1) = 0, (1.8)

and ∫ 1

0

h(x) dx = 1, (1.9)
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Figure 1: Sketch of the steady two-dimensional version of a problem proposed and analysed

by Pukhnachev and co-workers: a non-isothermal thin fluid film in 0 ≤ x ≤ 1, −h(x) ≤ z ≤
h(x), whose free surfaces z = ±h(x) are subject to thermocapillarity.

where the constant heat-flux parameter b, which is proportional to q, may be taken to be

non-negative without loss of generality (see [14]). Equation (1.9) comes from (1.3), with V

now referring to volume per unit width in the y direction, and taken to be unity without

loss of generality.

With h(x) determined from (1.7)–(1.9) the temperature T (x) is given by

T (x) = −|q|
∫ x

0

dx̃

h(x̃)
+ |q|

∫ 1

0

∫ x̂

0

dx̃

h(x̃)
dx̂, (1.10)

satisfying the normalisation condition

∫ 1

0

T (x) dx = 0. (1.11)

In the present paper we provide a closed-form (parametric) solution of the two-dimensional

problem defined by (1.7)–(1.11), and describe its properties. Specifically, we extend and

correct the paper by Karabut & Pukhnachev [8] in which the problem is solved numerically,

and in which it is claimed that there exists a unique solution for any value of b. We

present our solution in Section 2, and from this we show that, on the contrary, solutions

exist only when b does not exceed a critical value bc found numerically by Karabut &

Pukhnachev [8], and that when b ≤ bc there are in fact two solutions, one of which recovers

that obtained numerically by Karabut & Pukhnachev [8], the other being new. In Section 3

some properties of the solutions are discussed, in Section 4 comparison is made with the

analysis of Karabut & Pukhnachev [8], and in Section 5 the limit b → 0 is considered. In
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an appendix we derive asymptotic expansions of certain integrals that are used to obtain

our main results.

It is worth noting that the ordinary differential equation in (1.7) arises in many other

contexts involving thin films, and so has been studied extensively; see, for example, the

papers by Voinov [18], Tuck & Schwartz [17], Duffy & Wilson [4], Eggers [5, 6], Limat

& Stone [10], Bonn et al. [2], Neogi [11], Chan, Gueudré & Snoeijer [3], Karpitschka

& Riegler [9], Janeček et al. [7] and Snoeijer & Andreotti [16]. In particular, Duffy &

Wilson [4] discussed the general solution of this differential equation in some detail.

2 Solution of the two-dimensional problem (1.7)–(1.11)

When b = 0 the (unique) solution of (1.7)–(1.11) is simply

h ≡ 1, T = |q|
(
1
2
− x

)
, (2.1)

and so from now on we take b > 0, in general.

2.1 General solution

As discussed by, for example, Duffy & Wilson [4], the substitution

dx

ds
=

(
2

b

)1/3 1

z(s)2
, h =

1

z(s)2
, (2.2)

in terms of a parameter s, reduces the differential equation (1.7) to

d

ds

(
1

z

d2z

ds2

)
= 1, (2.3)

whose solution may, without loss of generality, be written as

z(s) = αAi(s) + β Bi(s), (2.4)

where Ai and Bi denote the usual Airy functions (Abramowitz and Stegun [1] or the NIST

Handbook of Mathematical Functions [12]), and α and β are arbitrary constants (the third

integration constant having been set to zero since it leads only to a shift in the parameter

s). From (2.2) the general solution of (1.7) may be written in the parametric form

x =

(
2

b

)1/3 ∫ s

s0

1

z(s̃)2
ds̃, h =

1

z(s)2
, (2.5)

where the constant s0 denotes the value of s when x = 0, so that x(s0) = 0. Utilising the

relations

Ai(s)Bi′(s)−Ai′(s)Bi(s) =
1

π
,

d

ds

(
a1 Ai(s) + b1Bi(s)

aAi(s) + bBi(s)

)
=

ab1 − ba1

π [aAi(s) + bBi(s)]2
(2.6)
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for any constants a, b, a1 and b1, we may perform the quadrature in (2.5) to obtain

x =

(
2

b

)1/3 π

αβ1 − βα1

(
α1 Ai(s) + β1 Bi(s)

z(s)
− α1Ai(s0) + β1 Bi(s0)

z(s0)

)
,

h =
1

z(s)2
,

(2.7)

where the constants α1 and β1 are arbitrary except that αβ1 − βα1 6= 0 (the expression for

x in (2.7) being independent of the choice of α1, β1). It will turn out in the present problem

that αβ 6= 0, and so without loss of generality we may take α1 = 0 and β1 6= 0; thus finally

we obtain the general solution of (1.7) in the closed (parametric) form

x = π

(
2

b

)1/3 Ai(s0)Bi(s)− Bi(s0)Ai(s)

z(s0)z(s)
, h =

1

z(s)2
, (2.8)

where z is given in (2.4). To determine the temperature T in terms of the parameter s

we integrate the second equation in (1.6) using (2.2) and then impose the normalisation

condition (1.11) to obtain

T = T0 −
(
2

b

)1/3

|q|s, T0 =

(
2

b

)2/3

|q|
∫ s1

s0

s

z(s)2
ds = constant, (2.9)

showing that T is, in fact, simply linear in s (and hence that T could have been used as the

independent variable, in place of the parameter s).

To complete the solution, we must now determine the constants α, β, s0 and s1 such that

(1.8) and (1.9) are satisfied. For later use we note that

dh

dx
= −2

(
b

2

)1/3 1

z

dz

ds
,

d2h

dx2
= 2

(
b

2

)2/3
[(

dz

ds

)2

− sz2

]
. (2.10)

2.2 Conditions on z(s)

Denoting by s1 the value of s when x = 1 we have x(s1) = 1, which with (2.5) gives

∫ s1

s0

1

z(s)2
ds =

(
b

2

)1/3

, (2.11)

or equivalently with (2.8) gives

Ai(s0)Bi(s1)− Bi(s0)Ai(s1)

z(s0)z(s1)
=

1

π

(
b

2

)1/3

. (2.12)

From (1.8) and (2.10) we have

dz

ds
= 0 at s = s0, s = s1, (2.13)

that is,

αAi′(s0) + β Bi′(s0) = 0, αAi′(s1) + β Bi′(s1) = 0. (2.14)
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Lastly, the prescribed-volume condition (1.9) gives

∫ s1

s0

1

z(s)4
ds =

(
b

2

)1/3

. (2.15)

With b (> 0) prescribed, the parameters α, β, s0 and s1 are to be determined from the

algebraic equations (2.11), (2.14) and (2.15), and then the complete solution for h in (2.8)

and T in (2.9) is known.

The parameters α and β may be eliminated from (2.11), (2.14) and (2.15) to give a pair

of simultaneous algebraic equations for s0 and s1:

Ai′(s0)Bi
′(s1) = Bi′(s0)Ai

′(s1), J 2
2 =

(
b

2

)1/3

J4, (2.16)

where we have defined Jn = Jn(s0, s1) for n = 2 and n = 4 by

Jn(s0, s1) :=

∫ s1

s0

ds[
Bi′(s1)Ai(s)−Ai′(s1)Bi(s)

]n . (2.17)

Then, with s0 and s1 known, α and β are given by

α =

(
2

b

)1/6

J
1/2
2 Bi′(s1) =

J
1/2
4

J
1/2
2

Bi′(s1), (2.18)

β = −
(
2

b

)1/6

J
1/2
2 Ai′(s1) = −J

1/2
4

J
1/2
2

Ai′(s1). (2.19)

We note that in the case n = 2 the quadrature in (2.17) may be performed explicitly:

J2(s0, s1) = π2 Ai(s0)Bi(s1)− Bi(s0)Ai(s1)

Ai(s0)Bi
′(s1)− Bi(s0)Ai

′(s1)
, (2.20)

obtained via (2.6) with a = Bi′(s1), b = −Ai′(s1), a1 = Bi(s1) and b1 = Bi(s1); however, in

the case n = 4 there seems to be no corresponding simple expression for J4(s0, s1).

2.3 Existence of solutions

The film thickness 2h must be finite for 0 ≤ x ≤ 1, and so z(s) must not vanish for

s0 ≤ s ≤ s1, that is, z(s) must remain of one sign (which without loss of generality we may

take to be positive) between its stationary points at s = s0 and s = s1. If α = 0 (so that

z(s) ∝ Bi(s)) or β = 0 (so that z(s) ∝ Ai(s)) then z(s) has no pairs of stationary points

between which it is of one sign; therefore, as indicated earlier, we will always have αβ 6= 0.

Since z(s) has stationary points at s = s0 and s = s1, it must have at least one inflection

point in (s0, s1). Moreover, since z(s) satisfies z′′(s) = sz(s), and since we require z > 0, an

inflection point can occur only at s = 0. We deduce that z(s) has a single inflection point

at s = 0, and hence that s0 < 0 < s1. It therefore also follows that z has no stationary

point in (s0, s1).

Since α and β are non-zero, by (2.14) we have Bi′(s0),Bi
′(s1) 6= 0. Therefore the first

equation in (2.16) is equivalent to

Ai′(s0)

Bi′(s0)
=

Ai′(s1)

Bi′(s1)
. (2.21)
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Figure 2: Plot of Ai′(s)/Bi′(s) as a function of s. The largest (negative) zero of this function

is at s = ŝ0 ≃ −1.018793.

Figure 2 shows a plot of Ai′(s)/Bi′(s) as a function of s; the relation

d

ds

(
Ai′(s)

Bi′(s)

)
=

s

π
[
Bi′(s)

]2 (2.22)

implies that Ai′(s)/Bi′(s) is increasing on the interval [0,∞) and decreasing on each subin-

terval of (−∞, 0] that lies between two neighbouring poles. Let s = ŝ0 ≃ −1.018793 denote

the largest (negative) zero of Ai′(s). If s1 is given, then s0 must be the largest negative

solution of (2.21), i.e. s0 must be the unique solution of (2.21) in the interval (ŝ0, 0), for if

the solution s0 were on any “lower” branch (i.e. s0 < ŝ0), then the function z would have

one or more stationary points in (s0, s1) (corresponding to solutions of (2.21) on “higher”

branches), contradicting our earlier conclusion that z has no such stationary point. Hence

we have shown the following lemma.

Lemma 2.1. For given b > 0 the problem (1.7)–(1.9) has a solution if and only if there

exist s1 > 0 and s0 ∈ (ŝ0, 0) such that

Ai′(s0)

Bi′(s0)
=

Ai′(s1)

Bi′(s1)
,

(
b

2

)1/3

=

[
J2(s0, s1)

]2

J4(s0, s1)
, (2.23)

where the Jn(s0, s1) are defined in (2.17). In that case a solution is given in closed (para-

metric) form by

x = π

(
2

b

)1/3 Ai(s0)Bi(s)− Bi(s0)Ai(s)

z(s0)z(s)
, h =

1

z(s)2
, (2.24)

where

z(s) =

[
J4(s0, s1)

]1/2
[
J2(s0, s1)

]1/2
[
Bi′(s1)Ai(s)−Ai′(s1)Bi(s)

]
. (2.25)

Moreover, the temperature T is given by (2.9).
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Figure 3: Plot of b as a function of s1, indicating, in particular, that there exists a solution

only when 0 ≤ b ≤ bc.

Rather than prescribing b and then determining s0, s1 and z from (2.23) and (2.25), it is

more convenient and numerically more efficient to prescribe s1 ∈ (0,∞) and then determine

s0 from (2.23)1, b from (2.23)2 and z from (2.25).

Figure 3 shows a plot of b as a function of s1 (> 0), indicating, in particular, that

there exists a critical value b = bc ≃ 9.316786 (see subsection 2.4 below), corresponding to

s1 = s1c ≃ 1.159888, such that for b < bc there are two values of s1 that lead to this b, i.e.

there are two solutions h, for b = bc there is one value of s1 and hence one solution for h,

and for b > bc there is no solution. We now prove rigorously that there is only a finite range

of values for b for which there exists a solution.

Theorem 2.2. There exists a critical value bc > 0 such that for b < bc the problem (1.7)–

(1.9) has at least two solutions and for b > bc it has no solution.

Proof. First note that the function b depends continuously on s1. We consider the asymp-

totic behaviour of b as s1 → 0+ and s1 → ∞.

When s1 → 0+ we have straightforwardly

s0 ∼ −s1 → 0−, Jn ∼ 2πns1, b ∼ 16s31 → 0+. (2.26)

For the behaviour as s1 → ∞ we use Lemma A.1, which implies that

b = 2
J6
2

J3
4

∼ 2

(
π2s

−1/2
1

)6
(
2
3
π4s

−1/2
1

)3 =
27

4
s
−3/2
1 → 0+, s1 → ∞. (2.27)

Hence there exists a value bc such that for b > bc there exists no solution for s1 (and hence

no solution of (1.7)–(1.9)) and for b < bc there exist at least two different solutions for s1.

It remains to show that different values of s1 with the same b lead to different solutions for
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h and T . Assume that this is not the case. Then, for b < bc, there exist s̃1 > s1 and s̃0 < s0

both of which solve (2.23) and lead to the same functions h(x) and T (x). By (2.9) we then

have

T (1)− T (0) =

(
2

b

)1/3

|q|(s0 − s1) =

(
2

b

)1/3

|q|(s̃0 − s̃1), (2.28)

which is a contradiction.

Figure 3 indicates that there is a fold bifurcation at the critical value bc. In the following

we call the set of solutions corresponding to s1 < s1c the “first family” of solutions and

those corresponding to s1 > s1c the “second family”.

2.4 Critical values of the parameters

The critical value bc was obtained numerically by solving (2.23) simultaneously with the

condition that b, regarded as a function of s1, has a maximum b = bc at some s1 = s1c (with

corresponding s0 = s0c), namely

2J4
dJ2
ds1

= J2
dJ4
ds1

, (2.29)

obtained by differentiation of (2.23)2. The derivatives here may be written as

dJn
ds1

= πn +
s1
[
Ai′(s0)Bi(s1)− Bi′(s0)Ai(s1)

]

s0
[
Ai(s0)Bi

′(s1)− Bi(s0)Ai
′(s1)

]n+1

− ns1

∫ s1

s0

Bi(s1)Ai(s)−Ai(s1)Bi(s)[
Bi′(s1)Ai(s)−Ai′(s1)Bi(s)

]n+1
ds

(2.30)

for n = 2 and n = 4, obtained from (2.17) via Leibniz’s rule together with the result

ds0
ds1

= −s1
[
Ai′(s0)Bi(s1)− Bi′(s0)Ai(s1)

]

s0
[
Ai(s0)Bi

′(s1)− Bi(s0)Ai
′(s1)

] , (2.31)

obtained by differentiation of (2.16)1 with respect to s1. Equations (2.23)1 and (2.29) are

easily solved numerically to give s0c ≃ −0.883078 and s1c ≃ 1.159888, and then the critical

value bc ≃ 9.316786 is recovered from (2.23)2. The corresponding critical values of α and

β are αc ≃ 2.964360 and βc ≃ 0.353986; also z(s0c) ≃ 1.634701 and z(s1c) ≃ 0.816886, so

that h(0) ≃ 0.374217 and h(1) ≃ 1.498571 for the critical solution.

3 Properties of the solutions for b ≤ bc

The relation z′′(s) = sz(s) implies that z′′(s) is negative for s ∈ [s0, 0) and positive for

s ∈ (0, s1]. This, together with (2.13), shows that z′(s) < 0 for s ∈ (s0, s1). Hence z(s)

decreases monotonically from its maximum at s = s0 to its minimum at s = s1. Figure 4

shows a typical plot of z as a function of s ∈ [s0, s1], in the case s1 = 2.7, for which

s0 ≃ −1.01722. Since x is an increasing function of s by (2.5)1, it follows from (2.5)2 that

h(x) increases monotonically from its minimum at x = 0 to its maximum at x = 1.
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Figure 4: Typical plot of z as a function of s ∈ [s0, s1], in the case s1 = 2.7, for which

s0 ≃ −1.01722.

Relations (2.10)2 and (2.13) imply that

h′′(0) = −2

(
b

2

)2/3

s0
[
z(s0)

]2
> 0, h′′(1) = −2

(
b

2

)2/3

s1
[
z(s1)

]2
< 0. (3.1)

Moreover, h′′′(x) < 0 for x ∈ (0, 1) by the differential equation (1.7). Hence there exists

exactly one xi ∈ (0, 1) such that h′′(xi) = 0, i.e. h has exactly one inflection point. The

corresponding parameter si satisfies z
′(si)

2 = siz(si)
2 by (2.10)2, and therefore si > 0. Since

z > 0 and z′ < 0 we have

z′(si) = −√
si z(si). (3.2)

This, together with (2.10)1, gives the slope at the inflection point:

h′(xi) = 2

(
b

2

)1/3√
si. (3.3)

Figure 5 shows plots of free surface profiles h(x) obtained from (2.24)–(2.25) in the cases

(a) b = 0, 1, 2, . . . , 8, 9 and b = bc, and corresponding to s1 ∈ [0, s1c] (i.e. belonging to

the first family of solutions) and (b) b = 1, 2, . . . , 8, 9 and b = bc, and corresponding

to s1 ∈ [s1c,∞) (i.e. belonging to the second family of solutions). All the solutions for

b > 0 have the features discussed above: h is a monotonically increasing function of x with

h(0) > 0 and with a single inflection point in (0, 1); Karabut & Pukhnachev [8] demonstrated

the same properties for the first family of solutions.

From (1.10) and the monotonicity of h it is clear that T is a monotonically decreasing

and convex function of x. Figures 6(a) and 6(b) show the profiles of the reduced tempera-

ture T (x)/|q| for the two families of solutions corresponding to the same values of b as in

Figures 5(a) and 5(b), respectively.
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Figure 5: Plots of free surface profiles h(x) in the cases (a) b = 0 (for which h ≡ 1), 1, 2,

. . . , 9 and b = bc belonging to the first family of solutions (cf. Figure 1 of [8]) and (b) b = 1,

2, . . . , 9 and b = bc belonging to the second family of solutions.

4 Comparison with the results of Karabut & Pukhnachev

Karabut & Pukhnachev [8, Section 3] obtained solutions of (1.7)–(1.9) numerically for

b < b∗ ≃ 9.316 which agree very well with our first family of solutions, cf. Figure 5(a) and

[8, Figure 1]. Also our value of bc ≃ 9.316786 is in excellent agreement with their numerically

calculated value of b∗, up to which they were able to solve the problem numerically.

However, at the end of their Section 2 Karabut & Pukhnachev [8] claimed to have proved

that the problem (1.7)–(1.9) has a solution for all positive b (although it should be pointed

out that they could not find solutions numerically for b > b∗). This conclusion clearly

contradicts our Theorem 2.2. We believe the reason for this discrepancy is twofold. First,

the signs in [8, equation (2.9)] seem to be wrong, which lead to different signs in the

exponents in [8, equation (2.13)]. Secondly, the asymptotic expansion in [8, equation (2.20)]

(specifically, the factor in front of the exponential function) seems to be wrong; see also

the discussion at the end of this section. It is also worth pointing out that Karabut &

Pukhnachev [8] did not find our second family of solutions for b < bc, either numerically or

analytically.

In their discussion of the properties of solutions of the system (1.7)–(1.11), Karabut &

Pukhnachev [8] first converted the problem to a pair of first order differential equations,

given in their equations (2.6) and (2.7);3 in fact, these differential equations may also be

solved in closed (parametric) form. Specifically, for c > 0 and a ∈ R, a 6= 0, the initial value

3Equations (2.6) and (2.7) of Karabut & Pukhnachev [8] correspond to the values a = −1 and a = 1,

respectively, in (4.1); however, we believe that these values are erroneous, and should be a = −2 and a = 2,

respectively.
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Figure 6: Plots of profiles of the reduced temperature T (x)/|q| in the cases (a) b = 0 (for

which T (x)/|q| = 1
2
− x), 1, 2, . . . , 9 and b = bc belonging to the first family of solutions

and (b) b = 1, 2, . . . , 9 and b = bc belonging to the second family of solutions.

problem
dw

dζ
= −2 + aζ

√
w, ζ ∈ (0, c),

w(c) = 0,

(4.1)

has a solution w = w(ζ) given in parametric form by

ζ = −
(

4

|a|

)2/3 z′(s)

z(s)
, w =

(
4

|a|

)2/3[(z′(s)

z(s)

)2

− s

]2
, (4.2)

where

s ∈ [s0, si] if a > 0, s ∈ [si, s1] if a < 0, (4.3)

z is the function defined in (2.25), si is the unique positive solution of (3.2) and s1 is such

that

c =

(
4

|a|

)2/3√
si. (4.4)

It is always possible to find an s1 such that (4.4) holds since one may show that si → 0 as

s1 → 0+ and that si → ∞ as s1 → ∞.

Moreover, with the help of the solution (4.2) one may simplify the integrals that appear in

[8, equation (2.13)]. Specifically, let a0 > 0, c > 0, η ∈ R, and let w1 and w2 be the solutions

(4.2) of (4.1) with a = −a0 and a = a0, respectively; then a straightforward calculation

12



shows that

Iη(c) :=

∫ c

0

2∑

k=1

exp

[
η(−1)k

∫ c

ξ

ζ√
wk(ζ)

dζ

]
1√
wk(ξ)

dξ

=

(
4

a0

)1/3[
z(si)

]
−4η/a0

∫ s1

s0

[
z(s)

]4η/a0ds

≍
[
z(si)

]
−4η/a0s

η/a0
1 exp

(
8η

3a0
s
3/2
1

)
, s1 → ∞, (4.5)

where the notation f(x) ≍ g(x) means that f(x)/g(x) is both bounded and bounded away

from 0. Integrals of the above type arose in [8] in a discussion of existence of solutions

of (1.7)–(1.9); specifically, it was claimed that the function F (c) := [I1(c)]
2/I2(c) satisfies

F (c) ∼ (2πc)1/2 → ∞ as c → ∞. However, from (4.5) we may now assert that F (c) ≍ 1 as

s1 → ∞ (that is, as c → ∞), and so the claim in [8] that the equation F (c) = b1/3 has a

solution c for any b > 0 is unfounded.

5 The limit b → 0+

The simple solution (2.1) in the case b = 0, which is included in Figures 5(a) and 6(a), is

the limit of the first family of solutions of (1.7)–(1.11) when b → 0+, since from (2.26) we

have b ∼ 16s31 → 0+ in the limit s1 → 0+ and hence h(x) → 1 and T (x) → |q|(1
2
− x) for

every x ∈ [0, 1]. A solution for small non-zero b may be obtained as a regular expansion in

b about this solution (see Pukhnachev [14, equation (6.4)] and Karabut & Pukhnachev [8,

equations (1.11), (3.1)]), and is not repeated here, for brevity.

The limit as b → 0+ of the second family of solutions of (1.7)–(1.11), which corresponds

to s1 → ∞, has a more complicated structure. From (2.21), (2.27) and (A.1) we obtain

s0 ∼ ŝ0 +
π
[
Bi′(ŝ0)

]2

2|ŝ0|
exp

(
−4

3
s
3/2
1

)
, s1 → ∞, (5.1)

where ŝ0 is again the largest (negative) zero of Ai′(s). In particular, s0 → ŝ+0 as s1 → ∞.

Now Lemma A.1 and equation (A.1) yield

z(s0) =
J
1/2
4

J
1/2
2

(
Bi′(s1)Ai(s0)−Ai′(s1)Bi(s0)

)

∼
√

2/3π2s
−1/4
1

πs
−1/4
1

Ai(ŝ0)Bi
′(s1)

∼
√

2π

3
Ai(ŝ0)s

1/4
1 exp

(
2

3
s
3/2
1

)
. (5.2)

Hence

h(0) =
1

[
z(s0)

]2 ∼ 3

2π
[
Ai(ŝ0)

]2 s
−1/2
1 exp

(
−4

3
s
3/2
1

)
, s1 → ∞, (5.3)
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with b and s1 related by (2.27); thus the thickness 2h at the left endpoint x = 0 decays

super-exponentially with s1. Also the curvature at this endpoint grows super-exponentially

with s1 since, by (3.1)1,

h′′(0) = −2

(
b

2

)2/3

s0
[
z(s0)

]2

∼ 3π|ŝ0|
[
Ai(ŝ0)

]2
s
−1/2
1 exp

(
4

3
s
3/2
1

)
, s1 → ∞. (5.4)

We show that, in the limit b → 0+, the second family of solutions converges to the function

h0(x) =
3

2
x(2− x), x ∈ [0, 1]. (5.5)

To this end we use the substitution

s = s1 − s
−1/2
1 t, 0 ≤ t ≤ s

3/2
1 − s0s

1/2
1 , (5.6)

as in the proof of Lemma A.1. For fixed t we have

z
(
s1 − s

−1/2
1 t

)
→

√
2

3
cosh t, s1 → ∞, (5.7)

by (A.2) and (A.18), which implies that

h → 3

2 cosh2 t
, s1 → ∞. (5.8)

With (5.2), (5.7) and (A.17) we obtain

x = π

(
2

b

)1/3 Ai(s0)Bi(s1 − s
−1/2
1 t)−Ai(s1 − s

−1/2
1 t)Bi(s0)

z(s0)z(s1 − s
−1/2
1 t)

∼ π
2

3
s
1/2
1

Ai(ŝ0)π
−1/2s

−1/4
1 exp

[
(2/3)(s1 − s

−1/2
1 t)3/2

]
√

2π/3Ai(ŝ0)s
1/4
1 exp

[
(2/3)s

3/2
1

]√
2/3 cosh t

∼ 1

cosh t
exp

[
2

3

(
(s1 − s

−1/2
1 t)3/2 − s

3/2
1

)]
→ et

cosh t
, s1 → ∞. (5.9)

Since
3et

2 cosh t

(
2− et

cosh t

)
=

3

2 cosh2 t
, (5.10)

it follows from (5.8) and (5.9) that the second family of solutions of (1.7)–(1.9) converges

to h0 given in (5.5) as b → 0, i.e.

h(x) → 3

2
x(2− x), x ∈ [0, 1], (5.11)

as s1 → ∞. The function h0 satisfies the differential equation (1.7), the boundary condition

(1.8)2 at x = 1 and the volume condition (1.9). However, this “outer” solution does not

satisfy the boundary condition (1.8)1 at x = 0, and there is an “inner” solution in a

boundary layer near x = 0 that accommodates this boundary condition; this is in accord

with the divergence of h′′(0) in this limit.
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Figure 7: Plots of profiles of (a) the free surface h(x) and (b) the reduced temperature

T (x)/|q| of the second family of solutions in the case b = 1 (full curves) and the leading

order outer asymptotic solutions in the limit b → 0 given by (5.11) and (5.12) (dashed

curves).

In a similar way to the above one can show that the temperature converges for x ∈ (0, 1]

and diverges for x = 0:

T (x) → |q|
3

log

(
2− x

4x

)
, x ∈ (0, 1], (5.12)

T (0) ∼ 2|q|
3

s
3/2
1 → ∞, s1 → ∞. (5.13)

Figure 7 shows comparisons between the asymptotic outer solutions for h(x) and T (x)/|q|
given in (5.11) and (5.12) and the exact solutions (2.24) and (2.9) in the case b = 1 belonging

to the second family, i.e. with s1 ≃ 3.9532 > s1c. The agreement is very good, especially

since the value b = 1 is not particularly small, given that b takes values only in the interval

0 ≤ b ≤ bc ≃ 9.316786. Physically the solution (5.5) may be interpreted as representing a

situation in which the effective Marangoni number γ is small (so that the surface tension

is essentially constant) and in which the free surface has constant curvature except near

x = 0 where it distorts strongly to satisfy the contact-angle condition h′(0) = 0. Equation

(1.6)1 shows that for the curvature to be non-constant near x = 0 the temperature gradient

must be large there (and so thermocapillarity is significant), and (1.6)2 shows that this is

achieved with small h.
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6 Conclusions

We have obtained a closed-form (parametric) solution of the steady two-dimensional thin-

film version of a problem concerning a weightless non-isothermal free film of incompressible

viscous fluid subject to thermocapillarity, proposed and analysed by Pukhnachev and co-

workers, and defined here in equations (1.7)–(1.11). Specifically, we extended and corrected

the paper by Karabut & Pukhnachev [8] in which the problem is solved numerically, and in

which it is claimed that there exists a unique solution for any value of b. We showed that,

on the contrary, solutions exist only when b ≤ bc ≃ 9.316786, and that there are then two

solutions, one of which recovers that obtained numerically by Karabut & Pukhnachev [8],

the other being new.

The questions of why, physically, the value b = bc is critical, and of what happens when b >

bc, remain open. It is conceivable that an unsteady evolution develops for b > bc, maintained

energetically by the heat input/output at the planes x = 0 and x = 1; the equations

derived by Pukhnachev & Dubinkina [15] for the unsteady situation would presumably be

the starting point for an analysis of such evolutions. It is also conceivable that the steady

solutions in the second family derived above are unstable; however, this is untested as yet.

We have followed Pukhnachev and co-workers in taking the film to be symmetric with

respect to the plane z = 0; it would be of interest to determine whether steady non-

symmetric solutions are also possible.

One advantage of having a closed-form solution is that we have been able to use it to

prove that the curve in Figure 3 satisfies (a) b → 0 as s1 → 0, (b) b has a global maximum

b = bc at s = s1c, and (c) b → 0 as s1 → ∞, and therefore that there are no “higher”

branches of solutions beyond those shown in Figure 3. However, we have not been able to

prove that the curve behaves monotonically on either side of its global maximum; if it does

not then for some given values of b (< bc) there will be more than two associated values of

s1, and hence there will be more than two solutions of the original problem.

The question of the possibility of the film “pinching off” when the two free surfaces come

into contact is also of interest. Pukhnachev [13] showed that the solutions in the first family

never approach pinch-off; this is consistent with Figure 5(a), which shows that even for the

maximum value b = bc the film is of finite thickness everywhere. We have shown that the

solutions in the second family approach pinch-off only in the limit b → 0, and then only at

x = 0.

A Appendix

In this appendix we establish the asymptotic behaviour of the integrals J2 and J4 defined

in (2.17) in the limit s1 → ∞. To this end let us first recall asymptotic relations for Ai, Bi
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and their derivatives (see, e.g. [12, 9.7.5–9.7.8]):

Ai(s) ∼ 1

2
√
π
s−1/4 exp

(
−2

3
s3/2

)
, Ai′(s) ∼ − 1

2
√
π
s1/4 exp

(
−2

3
s3/2

)
,

Bi(s) ∼ 1√
π
s−1/4 exp

(
2

3
s3/2

)
, Bi′(s) ∼ 1√

π
s1/4 exp

(
2

3
s3/2

) (A.1)

as s → ∞. The following lemma gives the desired asymptotic behaviour of J2 and J4.

Lemma A.1. For given s1 > 0 let s0 be the unique solution of (2.23)1 in (ŝ0, 0). Then

J2(s0, s1) ∼ π2s
−1/2
1 , J4(s0, s1) ∼

2π4

3
s
−1/2
1 , s1 → ∞. (A.2)

Proof. From (2.20) and (2.6) it may be shown that

J2(s0, s1) = π2 Bi(s1)

Bi′(s1)
− πBi(s0)

Bi′(s1)
[
Bi′(s1)Ai(s0)−Ai′(s1)Bi(s0)

] . (A.3)

The result for J2 in (A.2) follows from (A.3) and (A.1), the second term in (A.3) decaying

exponentially.

For J4 first note that

Ai(s),Bi(s),Bi′(s) > 0 and Ai′(s) < 0, s ∈ (ŝ0,∞). (A.4)

Using (A.4) we may estimate the integral over the negative part of the interval as follows:

∫
0

s0

1
[
Bi′(s1)Ai(s)−Ai′(s1)Bi(s)

]4 ds ≤
∫

0

ŝ0

1
[
Bi′(s1)Ai(s)

]4 ds

=
1

[
Bi′(s1)

]4
∫ 0

ŝ0

1
[
Ai(s)

]4 ds ≤
C

s1
exp

(
−8

3
s
3/2
1

)
, (A.5)

which is exponentially small.

Now consider the second part of the integral. Let us define

J̃4(s1) :=

∫ s1

0

1
[
Bi′(s1)Ai(s)−Ai′(s1)Bi(s)

]4 ds (A.6)

for s1 > 0. In this integral we make the substitution s = s1 − s
−1/2
1 t, which yields

J̃4(s1) = s
−1/2
1

∫ s
3/2
1

0

dt
[
Bi′(s1)Ai

(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)]4 . (A.7)

We show that the integrand is uniformly bounded by an integrable function so that we may

apply the Dominated Convergence Theorem. It follows from the asymptotic formulae (A.1)

that there exist m,M > 0 such that

m(1 + s)1/4 exp

(
2

3
s3/2

)
≤ Bi′(s) ≤ M(1 + s)1/4 exp

(
2

3
s3/2

)
, (A.8)

m(1 + s)−1/4 exp

(
−2

3
s3/2

)
≤ Ai(s) ≤ M(1 + s)−1/4 exp

(
−2

3
s3/2

)
(A.9)
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for all s ∈ [0,∞). Hence for 0 ≤ t ≤ s
3/2
1 we have

Bi′(s1)Ai
(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)

≥ Bi′(s1)Ai
(
s1 − s

−1/2
1 t

)

≥ m2(1 + s1)
1/4 exp

(
2

3
s
3/2
1

)(
1 + s1 − s

−1/2
1 t

)
−1/4

exp

(
−2

3

(
s1 − s

−1/2
1 t

)3/2
)

= m2

(
1− t

(1 + s1)s
1/2
1

)
−1/4

exp

(
2

3

[
s
3/2
1 −

(
s1 − s

−1/2
1 t

)3/2]
)

≥ m2 exp
(
f(s1, t)

)
, (A.10)

where use has been made of (A.4), and we have introduced the function

f(s1, t) :=
2

3

[
s
3/2
1

−
(
s1 − s

−1/2
1

t
)3/2]

, s1, t ∈ [0,∞), s1 ≥ t2/3. (A.11)

The derivative of f(s1, t) with respect to s1 is given by

∂f(s1, t)

∂s1
= s

1/2
1 −

(
s1 − s

−1/2
1 t

)1/2(
1 +

1

2
s
−3/2
1 t

)

=
t2
(
3 + s

−3/2
1 t

)

4s21

[
s
1/2
1 +

(
s1 − s

−1/2
1 t

)1/2(
1 +

1

2
s
−3/2
1 t

)] , (A.12)

showing that ∂f(s1, t)/∂s1 ≥ 0, which in turn implies that

f(s1, t) ≥ f
(
t2/3, t

)
=

2

3

[
t−

(
t2/3 − t−1/3t

)3/2]
=

2

3
t for s1 ≥ t2/3. (A.13)

It therefore follows from (A.10) and (A.13) that

Bi′(s1)Ai
(
s1−s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1−s

−1/2
1 t

)
≥ m2 exp

(
f(s1, t)

)
≥ m2 exp

(
2

3
t

)
. (A.14)

Hence the integrand in (A.7) is bounded from above by

1

m8
exp

(
−8

3
t

)
, (A.15)

which is an integrable function. Let us consider the pointwise limit of the integrand as

s1 → ∞, i.e. for fixed t. From the asymptotic expansions in (A.1) we obtain

Bi′(s1)Ai
(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)

∼ 1

2π
s
1/4
1 exp

(
2

3
s
3/2
1

)(
s1 − s

−1/2
1 t

)
−1/4

exp

(
−2

3

(
s1 − s

−1/2
1 t

)3/2
)

+
1

2π
s
1/4
1 exp

(
−2

3
s
3/2
1

)(
s1 − s

−1/2
1 t

)
−1/4

exp

(
2

3

(
s1 − s

−1/2
1 t

)3/2
)

=
1

2π

(
1− s

−3/2
1 t

)
−1/4[

exp
(
f(s1, t)

)
+ exp

(
−f(s1, t)

)]

∼ 1

π
cosh

(
f(s1, t)

)
. (A.16)
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The function f(s1, t) has the asymptotic behaviour

f(s1, t) =
2

3
s
3/2
1

[
1−

(
1− s

−3/2
1 t

)3/2]

= t+O
(
s
−3/2
1

)
→ t, s1 → ∞, (A.17)

and hence

Bi′(s1)Ai
(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)
→ 1

π
cosh t, s1 → ∞. (A.18)

By the Dominated Convergence Theorem we therefore obtain

lim
s1→∞

∫ s
3/2
1

0

dt
[
Bi′(s1)Ai

(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)]4 = π4

∫
∞

0

dt

cosh4 t
. (A.19)

With the substitution x = e2t we have
∫

∞

0

dt

cosh4 t
=

∫
∞

0

16e4t
(
1 + e2t

)4 dt =
∫

∞

1

8x

(1 + x)4
dx =

2

3
(A.20)

and hence

lim
s1→∞

∫ s
3/2
1

0

dt
[
Bi′(s1)Ai

(
s1 − s

−1/2
1 t

)
−Ai′(s1)Bi

(
s1 − s

−1/2
1 t

)]4 =
2π4

3
, (A.21)

which, together with (A.5) and (A.7), implies that

J4(s0, s1) ∼ J̃4(s1) ∼
2π4

3
s
−1/2
1 , s1 → ∞. (A.22)
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