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Abstract

In this article, we have investigated the instability of the liquid–vapour front
in a geothermal system with isothermal boundaries. A two–dimensional lin-
ear stability analysis of the isothermal basic state shows that the Rayleigh–
Taylor mechanism is the dominant contributor to instability. A conditional
expression for the critical modified Rayleigh number for different heat trans-
port processes has been found. It has been shown that the spontaneous
transition to instability is an artefact of neglecting thermal advection and
the imposition of the phase change front to be equidistant from the liquid
and vapour boundaries.

Keywords: Geothermal system, liquid-vapour front, spontaneous
transition, Rayleigh–Taylor instability

1. Introduction

In 1883 Lord Rayleigh described for the first time the instability of a
dense fluid overlying a lower density fluid in a gravitational field, which is
known as the Rayleigh-Taylor instability [1]. The transitions to instability
at fluid-fluid interfaces are of great interest on account of their wide range of
applications. These instabilities can often occur at a liquid-vapour interface
in a geothermal system [2–10]. There is much need for the better under-
standing of the different physical phenomena involved with liquid-vapour
phase changes, and this is the focus of our study.

The term “spontaneous” transition in continuum mechanics refers to a
special case of instability; when all wave numbers become unstable at the
same value of the controlling parameter. The “spontaneous” transition of
Il’ichev & Tsypkin [11, 12] is shown to be a very unusual case, depending
not only on the front position but also on the neglect of advective heat trans-
port. Tsypkin & Il’ichev [11, 12] investigated different cases of transition
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to instability of a stationary vertical phase change flow under the condi-
tion that conduction dominates over advection. It was shown that if the
interface is equidistant from the liquid and vapour boundaries then there is
a spontaneous transition to instability. A spontaneous transition to insta-
bility is a very unusual phenomenon and so it is worth investigating more
thoroughly the conditions under which it can occur. In particular, (i) is
it an artefact of the relationship assumed by Tsypkin & Il’ichev [11] be-
tween the phase-change temperature and the pressure, or does it occur in
other models; and (ii) is it crucial that advective heat transport is neglected?

Tsypkin & Il’ichev [7] using typical values for physical quantities, deduce
that advection may be neglected if

K|δP − ρwgL| ≪ 10−10N, (1)

where K is permeability, δP is the pressure difference across the layer, L is
the characteristic length scale, g is gravity and ρw is the density of water. If
we assume that |δP − ρwgL| is of the same order of magnitude as ρwgL (i.e.
that the applied pressure difference is roughly comparable in magnitude to
the hydrostatic pressure across the layer) then (1) simplifies to

KρwgL ≪ 10−10N, (2)

or, using ρw = 1000 kg m−3 and g ≈ 10 m s−2, then (2) yields

KL ≪ 10−14m3.

Thus for a sandstone with K = 10−10 m2, advection can be neglected only
if L ≪ 10−4 m, i.e. for any large-scale aquifer advection is important. For a
granitic rock with K = 10−16 m2, advection can be neglected only if L ≪ 102

m, so it may be negligible under these conditions.
In the present study, the basic vertical flow is without the phase motion
through the interface. We employ a simpler relation of temperature and
pressure at the liquid-vapour interface (T = TS(P )) by assuming a constant
temperature and a continuous pressure at the front and a more complete heat
transport equation. Both the pressure and the temperature profiles for the
base flow are linearly distributed. The important aspect of this analysis is
that we will consider a more realistic perturbed state accounting for thermal
advection. The Il’ichev & Tsypkin [7, 11] analysis will be studied as a special
case. We will show that the transition to instability is not spontaneous as
found by Il’ichev & Tsypkin [7, 11], indicating that the interesting behaviour
in their model is an artefact of taking a very simple model which neglected
thermal advection.
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2. Mathematical Model

We consider a uniform, isotropic and fully fluid saturated porous layer of
infinite extension bounded by two horizontal, much more permeable layers.
The upper and lower highly permeable layers are filled either with vapour
and liquid, respectively or liquid and vapour, respectively (see Fig. 1). In
the low-permeability layer there exists a phase change front which separates
the liquid phase from the vapour phase.
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Figure 1: Schematic diagram of the proposed problem.

2.1. Governing equations

The continuity equation for incompressible flow in dimensionless form is

∂u∗

liq,vap

∂x∗
+

∂v∗liq,vap

∂y∗
= 0. (3)

Darcy’s equation is taken to hold in each phase and are presented in scaled
form as

u∗

liq = −

(
∂P ∗

liq

∂x∗
+ R3

)

, u∗

vap = −
R1 R2 κ

C

(
∂P ∗

vap

∂x∗
+ R1 R3

)

,

v∗liq = −
∂P ∗

liq

∂y∗
, v∗vap = −

R1 R2 κ

C

∂P ∗

vap

∂y∗
.







(4)

In the equations above, R3 is the modified Rayleigh number which has been
defined as

R3 =
K ρ2

liq cpliq
g L

µliq km,liq

,
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where K is the permeability of the homogeneous medium and g is the ac-
celeration due to gravity with x∗-co-ordinate increasing downwards. The
modified Rayleigh number R3 will be our key quantity for understanding
the Rayleigh-Taylor instability in a geothermal system.
We will use the one-equation model to describe the heat transport in the
porous medium assuming local thermal equilibrium. In dimensionless form,
the equations in the liquid and vapour regions become

Eliq

∂Θliq

∂t∗
+ u∗

liq

∂Θliq

∂x∗
+ v∗liq

∂Θliq

∂y∗
=

∂2Θliq

∂x∗2
+

∂2Θliq

∂y∗2
,

Evap κR1

C

∂Θvap

∂t∗
+ u∗

vap

∂Θvap

∂x∗
+ v∗vap

∂Θvap

∂y∗
=

∂2Θvap

∂x∗2
+

∂2Θvap

∂y∗2
.







(5)

It can be seen from the above equations that the energy transport is coupled
with the mass transport, which introduces non-linearities. But this is not the
only reason for the inherited non-linearities. The other reason is the coupling
of the interface position with the heat and mass transport equation.
The most important aspect of phase change problems is the energy and
mass balance at the interface of the two phases, which makes the problem
non-linear. The energy jump condition at the interface x = S(y, t) is

ϕHliq
∂S∗

∂t
=

{
∂Θliq

∂x∗
−

∂S∗

∂y∗
∂Θliq

∂y∗

}

x∗=S∗

+
Θ0

κ

{
∂Θvap

∂x∗
−

∂S∗

∂y∗
∂Θvap

∂y∗

}

x∗=S∗

−Hliq

(
∂P ∗

liq

∂x∗
+ R3

)

. (6)

This energy jump condition shows that the liquid-vapour interface position
depends on the temperature distributions in both phases as well as on the
transfer of fluid across the front (evaporation or condensation).
Furthermore the mass jump condition at the interface is also coupled with
the velocity profiles in both phases, giving in scaled form

ϕ (1 − R1)
∂S∗

∂t∗
= R1 R2

∂P ∗

vap

∂x∗

∣
∣
∣
∣
x∗=S∗

−
∂P ∗

liq

∂x∗

∣
∣
∣
∣
x∗=S∗

− R3

(
1 − R2

1 R2

)
. (7)
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The governing equations and the boundary conditions are made dimension-
less using the following reference parameters,

x∗ = x
L
, S∗ = S

L
, κ =

km,liq

km,vap
, C =

cp,liq

cp,vap
, Θliq(x

∗) =
Tliq(x)−TL

TS−TL
,

Θvap(x
∗) =

TV −Tvap(x)
TV −TS

, Θ0 = TV −TS

TS−TL
, P ∗ =

K ρliq cpliq P

µliqkm,liq
,

u∗

liq,vap =
L ρliq,vap cpliq,vapuliq,vap

km,liq,vap
, v∗liq,vap =

L ρliq,vap cpliq,vap vliq,vap

km,liq,vap
,

Hliq = λ
cp,liq(TS−TL) , R1 =

ρvap

ρm,liq
, R2 =

µliq

µvap
, Eliq =

(ρcp)m,liq

(ρcp)liq
,

Evap =
(ρcp)m,vap

(ρcp)vap
, t =

L2ρliqcp.liqt∗

km,liq







where Hliq is the reciprocal of the Stefan number for the liquid region, and
represents the ratio of the latent heat λ to the sensible heat (TS − TL) [13,
p. 91]. The pressure scale is based on these characteristic velocities and
the resistance of the medium to liquid flow. The ratio of the temperature
contrasts across the liquid and vapour layers is denoted by Θ0. The present
model is the same as was considered in references [10, 14, 15]. For details of
the notation, especially the non-dimensionalisation parameters, the reader
is referred to these references.

3. Linear Stability analysis

In this section, we will discuss the stability of a steady liquid-vapour
phase change front in a porous medium with isothermal boundaries and
no through flow. To examine the stability of the liquid-vapour interface, an
infinitesimal disturbance is applied to the basic state. The aim is to linearise
the governing equations and boundary conditions about the basic state and
to study the behaviour of the perturbed interface.

3.1. Perturbed form of the problem

The temperature, velocity, pressure field both in the liquid and vapour
regions and the liquid-vapour phase change front are expanded in the fol-
lowing manner

Θliq = Θ0
liq(x

∗) + ǫΘ1
liq(x

∗, y∗, t∗), Θvap = Θ0
vap(x

∗) + ǫΘ1
vap(x

∗, y∗, t∗),

u∗

liq = ω0 + ǫ ω1, u∗

vap = Ω0 + ǫΩ1, v∗liq = Γ0 + ǫΓ1, v∗vap = Υ0 + ǫΥ1,

P ∗

liq = Λ0 + ǫΛ1, P ∗

vap = Π0 + ǫΠ1, S∗ = S∗

0 + ǫ S∗

1(y∗, t∗),







and only the first order terms in ǫ are retained [16, p. 48], where 0 <
ǫ ≪ 1. The small perturbation parameter ǫ represents the magnitude of
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the deviation from the basic state. The subscript and superscript 0 and 1
denote the steady state and perturbed state, respectively.

3.2. Steady state

The basic state of the system is assumed to be steady and independent
of the horizontal variable y∗, so Λ0, Θ0

liq, Π0 and Θ0
vap are all functions of x∗

only. Also the fluid is stationary, ω0 = Ω0 = Γ0 = Υ0 = 0. The temperature
profile is assumed to be conductive and the phase change front is static, so
the equations governing the basic state will take the form

pressure profile







dΛ0

dx∗
= −R3, Λ0(0) = P ∗

L,

dΠ0

dx∗
= −R1 R3, Λ0(S

∗

0) = Π0(S
∗

0),

(8)

and

temperature profile







d2Θ0
liq

dx∗ 2
= 0, Θ0

liq(0) = 0, Θ0
liq(S

∗

0) = 1,

d2Θ0
vap

dx∗ 2
= 0, Θ0

vap(1) = 0, Θ0
vap(S

∗

0) = 1,

dΘ0
liq

dx∗
+

Θ0

κ

dΘ0
vap

dx∗
= 0.

(9)

The stationary solutions of (8) and (9) give the linear pressure profile and the
purely conductive temperature profiles in the liquid and the vapour regions

Λ0 = P ∗

L − R3 x∗, Π0 = P ∗

L + R3 S∗

0 (R1 − 1) − R1 R3 x∗,

Θ0
liq =

x∗

S∗

0

, Θ0
vap =

x∗ − 1

S∗

0 − 1
.







(10)

The front position in the steady state is

S∗

0 =
κ

κ + Θ0
. (11)

The above equation (11) shows that in the absence of net flow in the reser-
voir, the front position depends on the ratio of the temperature contrast
(Θ0 ) and the ratio of thermal conductivities (κ) of the two phases. It will
helpful to predict the different positions of the liquid-vapour interface, while
assuming some special properties of these two controlling parameters;
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1. If κ → 0 then S∗

0 → 0. (the system is dominated by the vapour phase)

2. If κ = Θ0 then S∗

0 = 1
2 . (the interface is equidistant from the liquid

and vapour boundaries)

3. If Θ0 → 0 then S∗

0 → 1. (the system is dominated by the vapour
phase)

3.3. The eigenvalue problem

According to the classical procedure [16, p. 49], the pressure and tem-
perature profiles in both regions (liquid and vapour) and the phase change
interface location in the first order problem are expanded in normal modes,

(
Θ1

liq,Θ
1
vap,Λ1,Π1, S

∗

1

)
= (φliq(x

∗), φvap(x
∗),Ψ(x∗),Σ(x∗),Φ) exp [σt∗ + i l y∗],

(12)

where φliq, φvap and Φ are the eigenfunctions of temperature in the liquid
region, temperature in the vapour region and the interface location, respec-
tively, and l and σ denote the wave number and the rate of growth (or
decay) of the disturbance. The eigenfunctions of pressure in both phases
(liquid and vapour) are denoted by Ψ and Σ, respectively.
The eigenvalue problem with the appropriate boundary conditions for the
pressure profiles in both phases (liquid and vapour) is

d2Ψ(x∗)

dx∗ 2
− l2Ψ(x∗) = 0, Ψ(0) = 0 ,Σ(1) = 0,

d2Σ(x∗)

dx∗ 2
− l2Σ(x∗) = 0, Ψ(S∗

0) = Σ(S∗

0) + Φ R3 (1 − R1),

ϕ (1 − R1) σ Φ = R1 R2
∂Σ

∂x∗

∣
∣
∣
∣
x∗=S∗

0

−
∂Ψ

∂x∗

∣
∣
∣
∣
x∗=S∗

0

.







(13)

The solutions of (13) are

pressure profile







Ψ(x∗) = 2C1 sinh( l x∗),

Σ(x∗) = 2C2
sinh( l (x∗ − 1))

cosh( l) − sinh( l)
,

(14)

where

C1 =
Φ

2 l

1 − R1

sinh( l S∗

0)

{
ϕσ + R3 l coth(l S∗

0)

R1R2 coth(l (S∗

0 − 1)) − coth(l S∗

0)
+ R3 l

}

,
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C2 =
Φ

2 l

(1 − R1) {ϕσ + lR3 coth(lS∗

0)} {cosh(l) − sinh(l)}

{R1R2 cosh(l(S∗

0 − 1)) − coth(lS∗

0) sinh(l(S∗

0 − 1))}
.

The eigenvalue problem for the temperature profiles in both phases (liquid
and vapour) is

(
d2

dx∗ 2
− Eliqσ − l2

)

φliq +
1

S∗

0

dΨ

dx∗
= 0,

φliq(0) = 0, φliq(S
∗

0) = −
Φ

S∗

0

,

(
d2

dx∗ 2
−

EvapκR1

C
σ − l2

)

φvap +
1

S∗

0 − 1

R1 R2 κ

C

dΣ

dx∗
= 0,

φvap(1) = 0, φvap(S
∗

0) =
Φ

1 − S∗

0

.







(15)

The solution of (15) for the eigenfunctions of the temperature profiles is

φliq (x∗) =
C1

S∗

0

2 l

Eliq σ

[
sinh(γ1x

∗)

sinh(γ1S
∗

0)
{cosh(γ1S

∗

0) − cosh(lS∗

0)}

+ {cosh(lx∗) − cosh(γ1x
∗)}] −

Φ

S∗

0

sinh(γ1x
∗)

sinh(γ1S
∗

0)
, (16)

φvap (x∗) =
2 l R2 C2

(S∗

0 − 1)Evapσ {cosh( l) − sinh( l)}

{
sinh(γ2(x

∗ − 1))

sinh(γ2(S∗

0 − 1))

{cosh(γ2(S
∗

0 − 1)) − cosh(l(S∗

0 − 1))}

+ cosh(l(x∗ − 1)) − cosh(γ2(x
∗ − 1))}

−
Φ

(S∗

0 − 1)

sinh(γ2(x
∗ − 1))

sinh(γ2(S∗

0 − 1))
, (17)

where γ1 =
√

l2 + Eliq σ and γ2 =

√

l2 +
Evap κR1

C
σ.

The relationship between the growth rate and wave number can be obtained
using the energy balance across the liquid-vapour interface. This relation-
ship is obtained by substituting (12) into the first order of the energy jump
condition at the phase-change front, which yields

ϕHliq σ Φ =

[{
dφliq

dx∗
+

Θ0

κ

dφvap

dx∗

}

− Hliq

dΨ

dx∗

]

x∗=S∗

0

. (18)
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The growth rate σ in equation (18) has multiple solutions because γ1 and γ2

depend on σ; this non-linear equation must be solved numerically for σ. For
this, Maple’s implicitplot routine has been used. In this case, this method
is adequate, but in some related problems [15] matters are not so simple.

4. Transition to instability

In this section, the possible types of transition to instability and the
effect of the critical modified Rayleigh number on the stability of the front for
short, medium and long wavelength disturbances will be discussed. Before
doing so, however, it is important to find out the critical modified Rayleigh
numbers for both zero wave number and infinite wave numbers, which play
important roles in the changeover of the stable system to unstable.

4.1. Long wavelength disturbances

From the dispersion Eq. (18), three different special cases are derived.
The key variation in these cases is the assumption of different modes of heat
transport (see Table 1), where ‘diff’ and ‘adv’ stand for diffusion and advec-
tion, respectively.

Boundary conditions Basic state Perturbed state

Only diff in the entire system
(dΨ/dx∗ and dΣ/dx∗ equal to zero in (15))

Isothermal temperature no
at the boundaries through Adv & diff in the liquid phase
with fixed pressure flow (dΣ/dx∗ equal to zero in (15))

Adv & diff in the vapour phase

(dΨ/dx∗ equal to zero in (15))

Adv & diff in the entire system (18)

Table 1: List of problems under consideration

The asymptotic conditions on critical modified Rayleigh numbers for long
wavelengths for the above different cases are given in Table 2. The proce-
dure followed to obtained these critical modified Rayleigh numbers has been
discussed in [14].
The above different critical modified Rayleigh numbers for long wavelengths
based on the different modes of heat transfer, are plotted in Figure 2 as func-
tion of the ratio of the temperature contrasts across the liquid and vapour

9



Table 2: List of critical modified Rayleigh numbers for long wavelength

Critical modified Rayleigh number, |Rcrit
3 0

| Modes of heat transport

(κ R1 R2 + Θ0)

Θ0 Hliq R1 R2 (R1 − 1)

(
κ + Θ0

κ

)2

Only diff in the entire system

2 (κ R1 R2 + Θ0)

Θ0 R1 R2 (1 + 2 Hliq)(R1 − 1)

(
κ + Θ0

κ

)2

Adv & diff in the liquid phase

2 C (κ R1 R2 + Θ0)

Θ0 R1 R2 (Θ0 + 2 C Hliq)(R1 − 1)

(
κ + Θ0

κ

)2

Adv & diff in the vapour phase

2 C (κ R1 R2 + Θ0)

Θ0 R1 R2 (R1 − 1)(Θ0 + (2Hliq + 1)C)

(
κ + Θ0

κ

)2

Adv & diff in the entire system

layers Θ0 and of the density ratio R1. Figure 2 (a) shows that when Θ0

is very large or very small the system is more stable than for intermediate
values; this is because these limits correspond to a strong thermal gradient
on one side or the other of the front, which has a stabilising effect through
vertical diffusion. Furthermore, a system which is governed by both advec-
tion and conduction is more unstable for zero wave number then a purely
conductive system. Figure 2 (b) surprisingly shows that the interface be-
comes more stable as R1 → 0; because the Rayleigh−Taylor mechanism is
not effective for l = 0, and hence our physical intuition is misleading in this
case.
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Advection & diffusion in the entire system.

Advection & diffusion in the liquid phase and only diffusion in the vapour phase.

Only diffusion in the liquid and advection & diffusion in the vapour phase.

Only diffusion in the entire system.

Ratio of temperature contrast, Θ0

|R
3cr

it 0|

0 1 2 3
6

7

8

9

10

(a) Densities ratio, R 1

|R
3cr

it 0|

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

(b)

Figure 2: The critical modified Rayleigh number for long wavelength verses (a) ratio of the
temperature contrast and (b) ratio of the densities R1, where R2 = 8.75, C = 1.96, κ =
4, Hliq = 5.

4.2. Short wavelength disturbances

We will use asymptotic analysis to help us locate the stability bound-
ary in parameter space. We will focus in particular on the critical mod-
ified Rayleigh number for infinite wave number. For this let σ = σ∗ l and

σ∗ = σ0 +
σ1

l
+O

(
1

l2

)

and take l → ∞; then expanding (18) in asymptotic

series in l and equating the terms proportional to l, gives

σ0 ∼
R1 R2 + 1

ϕHliq R1(R2 + 1)

{

−
1

S∗

0

−
Θ0

κ

1

1 − S∗

0

}

︸ ︷︷ ︸

first term

−
1 − R1

R2 + 1

R2 R3

ϕ
︸ ︷︷ ︸

second term

. (19)

From (19) it is clear that the first term has always negative sign because the
dimensional parameters in the first term are all positive real numbers. So
the first term, which represents the diffusive heat transport process, has a
stabilising effect on the liquid-vapour phase change front.
Now here we have two different cases to discuss. If the lighter fluid is above
the heavier fluid, i.e., R3 > 0, then the second term has a negative sign
(recall that R1 < 1) and the front is stable for infinite wave numbers.
Alternatively, if R3 < 0, which means that heaver fluid (liquid) is above the
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lighter fluid (vapour), then the second term in (19) has a positive sign and
has a destabilising effect on the liquid-vapour phase change front. It is the
competition between the first and second terms which will determine the
nature of the liquid-vapour phase change front. Now we will find the critical
modified Rayleigh number for infinite wave numbers. For this, in the case
of marginal stability σ0 = 0, and solving (19) for R3 and using the value of
S∗

0 from (11), we have

Rcrit
3 ∼ Rcrit

3,∞ =
2(R1 R2 + 1)

Hliq R1 R2 (R1 − 1)

κ + Θ0

κ
, as l → ∞. (20)

This tells us immediately that the instability can only occur for sufficiently
large, negative values of the modified Rayleigh number R3. The condition
on critical modified Rayleigh number for infinite wave numbers for the three
different cases (see Table 2) is the same as (20), because the horizontal
diffusion dominates advection for short waves.

4.3. Anomaly of spontaneous transition

In this section, we will explore the possibility of spontaneous transitions
to instability depending upon the position of the liquid-vapour phase change
front S∗

0 . Figure 3 displays the neutral stability curves (σ = 0) for the differ-
ent heat transport processes and front positions (see Table 1). The critical
modified Rayleigh number for the onset, |Rcrit

3 |, varies with front position
S∗

0 and wavelength l. The lowest critical modified Rayleigh numbers in fig-
ure 3 (a) and (c) are found by searching for the minimum value of |Rcrit

3 |
for all wavelengths. Figure 3 (a) shows that the system with only diffusion
has no minimum value of |Rcrit

3 |. The liquid-vapour interface become un-
stable first for short-waves and then for long-waves. For the case when the
liquid-vapour interface is equidistant from the liquid and vapour boundaries,
the transition to instability is spontaneous (see figure 3 (b)). Figure 3 (c)
shows that the lowest critical modified Rayleigh number of the first unstable
mode, |Rcrit

3,mini|, is 6.26. This occurs for the system with both advection and

diffusion for the critical wavelength lcrit = 2.78. These results are for the
particular set of parameters chosen, thus the critical values of |Rcrit

3 | cannot
be assumed to be universal.
The overall feature of these special cases is that the advective heat transport
is not essential for instability, but it encourages the unstable behaviour. The
same observations were made by [14] while investigating the same system
with mixed boundary conditions (cooling flux at the liquid boundary).
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Figure 3: The dependence of |Rcrit
3 | on the wave number l for the different modes of heat

transport. For different curves associated with different heat transport processes see Fig.
2.

4.3.1. Liquid-vapour interface is near to the vapour (lower) boundary

The imposition of interface to be near the vapour (lower) boundary, i.e.,
S∗

0 > 1
2 , represents the configuration of a liquid dominated geothermal sys-

tem. The representative example of how the growth rate (σ) varies with
the wave number (l) for the different transport processes, |R3| is the curve
parameter, is illustrated in Figure 4. The short and long wavelength distur-
bances are found to be stable since σ < 0. Short wavelength disturbances
(large l) are stabilised by horizontal thermal diffusion which eliminates
the variations in the horizontal direction of the perturbed front, whereas
long wavelength disturbances (small l) are stabilised by vertical diffusion.
Medium wavelength disturbances become unstable as the modified Rayleigh
number increases: this is a reflection of the buoyant instability, because the
denser fluid (liquid) is above the less dense fluid (vapour).
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Figure 4: Medium wavelength disturbances of the system when the liquid-vapour interface
is near to the vapour (lower) boundary, i.e., S∗
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4.3.2. Liquid-vapour interface is equidistant from the boundaries

Let us assume that the position of the liquid-vapour phase change front
is the middle of the porous layer, i.e., S∗

0 = 1
2 , so (11) yields

k = Θ0. (21)

Substituting (21) into the necessary conditions on the modified Rayleigh
numbers for the short and long wavelengths for the pure conductive heat
transfer in the entire system case, gives

Rcrit
3,0 =

4 (R1 R2 + 1)

Hliq R1 R2 (R1 − 1)
= Rcrit

3,∞, (22)

which shows that if |R3| = |Rcrit
3 0 | = |Rcrit

3 ∞
| (recall R3 < 0, liquid above

vapour), then σ(l) = 0. The instability takes place spontaneously, in the
sense that as |R3| is increased, the system becomes unstable, i.e. σ(l) = 0,
for all wave numbers l at once (see figure 5 (a)). The same type of transition
to instability was found by Il’ichev & Tsypkin [11], while considering that the
phase change temperature depends on pressure but we take the temperature
at the interface as a constant. Furthermore, if |R3| > |Rcrit

3 | then the system
is unstable, at fixed values of the pressure and temperature on the upper
and lower boundaries.
However, as we can see from Figures 5 (b) and (c), when any advection is
included the spontaneous transition no longer occurs. This indicates that
the interesting behaviour in Il’ichev & Tsypkin [11] model is an artefact of
taking a very simple model which neglected thermal advection.
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Figure 5: Transition to instability of the system when the liquid-vapour interface is equidis-
tant from the liquid and vapour boundaries, i.e., S∗
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2
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4.3.3. Liquid-vapour interface is near to the liquid (upper) boundary

The imposition of interface to be near the liquid (upper) boundary, i.e.,
S∗

0 < 1
2 , represents the configuration of a vapour dominated geothermal

14



system. The stability analysis reveals that the system with only diffusion is
stable to long wavelength disturbances, whereas the short and medium wave-
length disturbances are unstable for |R3| ≥ |Rcrit

3 ∞
|(see Figure 6 (a)). This

short-wave instability shows that the horizontal thermal diffusion becomes
unimportant. However, when any advection is included, the liquid-vapour
interface becomes unstable first to medium wavelength disturbances as the
modified Rayleigh number increases, through a Rayleigh-Taylor instability.
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Figure 6: Transition to instability of the system when the liquid-vapour interface is near
to the liquid (upper) boundary, i.e., S∗
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5. Discussion and conclusions

This study has investigated the two-dimensional stability of the liquid-
vapour interface in a fluid saturated porous layer with fixed temperatures
at the top and bottom boundaries. The base state is one dimensional with-
out through flow and the perturbation is considered both with and without
thermal advection.
In the liquid- and vapour-dominated regimes, there is a Rayleigh–Taylor in-
stability which is damped by horizontal diffusion but in which the instability
mechanism never precisely balances the stabilising effects for all wavenum-
bers.
For pure diffusive heat transport process in the entire system with equal
distribution of the two phases, the transition to instability is spontaneous,
which is completely in agreement with the results shown by Il’ichev & Tsyp-
kin [11]. However, the inclusion of advection means that spontaneous tran-
sition is no logner possible. The model with a pressure-independent phase-
change temperature shares with Il’ichev & Tsypkin’s model [11] the property
that it exhibits a spontaneous transition when S0 = 1/2 and advection is
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neglected, and that this strongly suggests that the explanation for this tran-
sition lies in the transport mechanisms rather than the pressure/temperature
relationship.
A further surprising result is that when the densities ratio R → 0, the
liquid-vapour interface becomes more stable because the Rayleigh–Taylor
mechanism loses effectiveness for long wavelength disturbances.
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Nomenclature

Latin

cp specific heat

g acceleration due to gravity

H reciprocal of Stefan number

K permeability

k thermal conductivity

L thickness of the low permeable
layer

l wave number

P pressure

q heat flux per unit area

S location parameter of the interface

T temperature

t time

x vertical coordinate

y horizontal coordinate

Greek symbols

ǫ perturbation parameter

κ thermal conductivities ratio

λ latent heat

µ dynamic viscosity

ν kinematic viscosity

ρ density

σ spectral parameter

σ∗ asymptotic spectral parameter

Θ dimensionless temperature

υ fluid flow velocity

ϕ porosity

Dimensionless quantities

C specific heat ratio

E heat capacity ratio

R kinematic viscosity ratio

R1 density ratio
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R2 dynamic viscosity ratio

R3 modified Rayleigh number

Subscripts

L liquid boundary

liq liquid phase

m porous medium

ref reference quantity

S at the phase transition front

s porous skeleton

V vapour boundary

vap vapour phase

0 base state

1 perturbed state

Superscripts

mini minimum

* dimensionless quantity

0 base state

1 perturbed state
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