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Signal amplification and control in optical cavities with off-axis feedback
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We consider a large class of optical cavities and gain media with an off-axis external feedback
which introduces a two-point nonlocality. This nonlocality moves the lasing threshold and opens
large windows of control parameters where weak light spots can be strongly amplified while the
background radiation remains very low. Furthermore, transverse phase and group velocities of a
signal can be independently tuned and this enables to steer it non mechanically, to control its spatial
chirping and to split it into two counter-propagating ones.

PACS numbers: 42.65.Sf, 42.55.-f, 89.75.Kd

In this letter we study the effects introduced by a two-point nonlocality [1] on a broad class of nonlinear equations
with both diffusion and diffraction. Systems modelled by this type of equations can be experimentally realised in
optics by cavities with an off-axis external feedback, which is the spatial analogous of a feedback with temporal
delay [2]. Off-axis feedback has been subject of theoretical and experimental study in liquid crystals light valves [3],
Kerr-like media [4, 5] and generic nonlinear systems with diffusive coupling [6]. Here instead we consider a broad class
of optical cavities using a general formalism that can be applied to gases, solid state and semiconductor media with
fast decay of the polarization, including media with negative refractive index and devices with soft apertures. The
simultaneous presence of diffusive and diffractive terms appears in universal Ginzburg-Landau equations describing
the behaviour of any spatially extended system near the onset of oscillations, such as, for instance, reaction-diffusion
systems and lasers [7]. These equations describe also properties of systems with time-delayed feedback and no spatial
degrees of freedom when the delay is order of magnitude larger than the other time scales [8], with the slow time
formally taking the role of the spatial variable.
We show that the inclusion of a two-point nonlocality generalises these equations introducing new regimes and is
a powerful way to amplify, characterise and control perturbations, either external or intrinsic to the system. In
particular, nonlocality changes the nature of the first instability, which without nonlocality leads to a spatially
extended, lasing state. With nonlocality, on the contrary, there are large windows of control parameters where small
localized signals can be strongly amplified while the background radiation in other region of the system remains
very low. Furthermore, the signal moves across the cavity with transverse phase and group velocities that are easily
managed to have the same or opposite signs. It is indeed possible, without altering the mechanical alignment of the
set-up, to control signals motion, tuning continuously the group velocity so that a localized perturbation is steered
either towards or against the off-set direction and can even be split into two counter-propagating components. The
tunability of the phase velocities allows to control the spatial chirping of light signals independently from the direction
of steering. These unusual properties open new possibilities for light control and can underpin applications in optical
communications, imaging and micromanipulation.

In the following we analyse how the first threshold depends on nonlocality, diffusion and diffraction, determine the
nature of the instability, find a second threshold and derive the equations for the phase and group velocity of localized
perturbations. We consider optical systems described by non-dimensional equations of the type

∂tE = g1(|E|2, N ; µ)E + eiδ∂2
xxE + reiφE∆x, (1)

∂tN = g2(|E|2, N, ∂2
xxN ; µ),

where E is the slowly-varying amplitude of the electric field, N is the population inversion and µ is a control parameter.
We consider here one transverse dimension x as nonlocality changes only the spatial dependence of the dispersion
along the direction of the shift. Time and space are scaled with field decay and with the square root of the modulus of
the Laplacian coefficient. Our analysis encompasses devices with diffusion that is due to Fourier filtering by intracavity
soft apertures [9] or to elimination of the fast variables [10], as well as media with positive or negative refractive index
[11]. δ gives the relative strength of diffusion and diffraction, with δ ∈ (0, π/2) for positive refractive indexes and
δ ∈ (−π/2, 0) for negative indexes, corresponding to left-handed materials. The term reiφE∆x represents nonlocal
coupling of the field E in a point x with the field E∆x in a point x + ∆x and is the consequence of an off-axis,
single-passage feedback loop. This is characterised by an amplitude 0 < r < 1 and a phase shift φ accumulated by
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the fast component of the electric field in the external loop. We assume here that the temporal delay of the feedback
is negligible compared to the time scales of E and N . The generic complex functions g1,2 allow us to describe all class
B lasers, including semiconductor. The following analysis immediately applies also to (i) the simpler case of systems
in which the variable N can be eliminated (class A) and (ii) a more general class of equations in which the feedback
term is nonlinear [12].

We consider perturbations δE ∝ exp (ωt + ikx) of the non lasing solution E0 = 0 and N0 such that g2(0, N0) = 0.
These perturbations have complex dispersion relation

ω = β − eiδk2 + rei(φ+k∆x), (2)

with β = g1(0, N0; µ) also complex. In the following real and imaginary parts of complex quantities have subindices
R and I, respectively. In the limit of vanishing shift ∆x = 0, the laser threshold, given by βth

R = −r cos(φ), decreases
when the feedback interferes constructively with the intracavity field and increases when the interference is destructive.
Because the fast relaxation of the polarization implies that the gain bandwidth is very large, all travelling waves have
the same gain/loss if there is no diffusion. The effect of diffusion is to filter the high Fourier components so that
the most unstable mode is the homogeneous one (k = 0) independently from the relative strength of diffusion and
diffraction (δ). When ∆x 6= 0, on the other hand, the most unstable mode can have k 6= 0. The nonlocality gives rise
to a modulation instability and allows for the existence of several bands of unstable wavevectors (ωR > 0) [3].

The off-axis feedback, besides modulation instability to several bands of wavevectors, provides a wide tunability of
the properties of the device and enables to control the first threshold. Inspection of Eq. (2) shows that the instability
threshold can be expressed as a function of four relevant parameters, namely φ, δ, r∆x2, and βR∆x2 (see Figs. 1a-b);
therefore increasing the shift size ∆x produces on the device the same effect of larger gain βR and feedback r. As
a specific effect of the nonlocality, we find that the relative strength of diffusion and diffraction, δ, also becomes an
effective parameter to control the threshold position. Indeed, the lowest gain and feedback thresholds (independently
on the feedback phase φ) are generally found in the purely diffractive limit (δ ∼ π/2). The effect of diffusion on the
feedback lasing threshold can be appreciated in Fig. 1a: for any not vanishing feedback phase φ, the threshold value
for the scaled feedback strength r∆x2 increases with the diffusion, being independent on the sign of the refractive
index (sign of δ). Both βR and r can be increased to cross the laser threshold as shown in Fig. 1b, and –similarly
to the case of perfect alignment– if the feedback is out of phase then stronger gain is required. For fixed values

FIG. 1: a) Instability thresholds for βR∆x2 = −0.2 and for φ = nπ/4 with n = 0, 1, 2, 3, 4 (from dark to light colors). The
lowest threshold is found for φ = 0 and the instability takes place on the right of the lines. b) Thresholds for δ = 0.45π and
different feedback φ as in (a). c) Thresholds for βR = −0.2 , δ = 0.45π and different feedback φ as in (a). d) First (continuous
line) and second (dashed line) thresholds for δ = 0.45π, r = 0.8 and φ = π/2.

either of the gain or of the feedback the nonlocality strongly decreases the threshold values for the gain as well as for
the feedback field, as seen in Figs. 1c and d. This can be understood considering that the most unstable mode has
k 6= 0 so that the effect of the nonlocal coupling is equivalent to a reduction of the feedback dephasing. Consistently
with this interpretation, in the case of feedback perfectly in phase with the intracavity field (φ = 0) the threshold is
independent on the lateral shift ∆x because the most unstable mode is the homogeneous one (k = 0).

Another effect of the nonlocality concerns the possibility to tune transverse phase and group velocities independently

from one another. This property enables non mechanical steering and spatial chirping of light beams as the high spatial
frequencies can accumulate in the left or right side of the beam. We remark that, as for conventional lasers without
off-axis feedback [14], phase travelling waves are exact solutions of the model. Phase and group velocities follow from
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FIG. 2: Sign of velocities for β∆x2 = −0.02 − i0.2, and for φ = π/2 (a) and δ = 0.2π (b). The dashed regions show where
phase and group velocities are positive, while the continuous line marks the instability threshold (the system is below threshold
on the left sides). Negative values of δ correspond to negative refractive indexes.

Eq. (2):

vp = −
ωI(k)

k
= k sin δ −

βI + r sin (k∆x + φ)

k
(3)

vg = −∂kωI = 2k sin δ − r∆x cos (k∆x + φ). (4)

They can be tuned independently because the parameter βI enters only in the expression of the phase velocity.
Evaluation of the velocities for the critical wavevectors kc allows us to identify the manifolds in the control parameter
space that separate regions in which the group and the phase velocity have the same sign from region in which these
velocities have opposite sign. In particular, the group velocity is null for r∆x2 = −2δ ± (4n + 1)π ∓ 2φ. As shown in
Fig. 2 equal or opposite signs of the velocities can be observed also at the instability threshold of the device (continuous
line) depending on the values of δ, r∆x2 and φ. The latter is a promising candidate to tune non mechanically the
velocities, for instance by changing the refractive index in the feedback loop.

Whenever the group velocity is non null, one has to determine whether amplified perturbations of the unstable
reference state E0 will drift away (convective instability), or will fill the entire system (absolute instability). The
convective regime is the one where the control of localized light signals is possible. The nature of the instability
is determined by finding the limit of the Green function of the linearised system of equations for large time. The
asymptotic local behaviour of the perturbation is found by generalising the saddle point technique developed in [6, 13]
–the details will be reported elsewhere. In Fig. 1d we show an example of thresholds of convective (I) and absolute
(II) instabilities; for any choice of parameters there are windows of convective instability before reaching the lasing
thresholds. By using the information in Figs. 1-2 and Eqs. (3-4) we can determine linear amplification, direction of
propagation and spatial chirping of any light spot in the transverse plane.

FIG. 3: Spatio-temporal diagram for the field intensity |E|2 starting from a small Gaussian perturbation of the vanishing state
E0, obtained by numerical simulation of Eqs. (5). Parameters: µ = 0.98, θ = 0.2, δ = 0.49π, r = 0.5, ∆x = 1 (coupling each
point with a shifted one on the right) and φ = π/2 (a), φ = −π/2 (b).

In order to check to what extent the linear analysis we reported predicts the dynamics of the full nonlinear device
we consider the standard model for class A lasers, obtained from Eqs. (1) with

g1 = −(1 + iθ − N)E, N = µ/(1 + |E|2)], (5)

with the usual parameters θ for the detuning with respect to the medium resonance, and µ for the pump [15]. The
dispersion relation for the field perturbations around the homogeneous steady state E0 = 0 are given by Eq. (2) with
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β = µ − 1 − iθ. Numerical simulations confirm the predicted thresholds, in agreement with the stability diagrams in
Fig. 1. Moreover, the wavenumbers dynamically selected and the velocities are well approximated by those obtained
from linear dispersion. In view of applications it is interesting to see the dynamics of local perturbation of the
homogeneous state: In Fig. 3 we demonstrate the ability of steering and amplifying beams in the convective region;
furthermore, one or both the signs of phase and group velocities can be changed with the proper parameters choice
(Figs. 3a-b), consistently with predictions presented in Fig. 2. Numerical simulations also confirm the possibility of
chirping; the phase of the field shows indeed a spatial dependent modulation.

FIG. 4: a) Evolution of a Gaussian perturbation as in Fig. 3 but for φ = π. b) Phase (dashed lines) and group (dahsed-dotted
lines) velocities. The upper (lower) curves are the velocities for kc (−kc). For r∆x > 0.26 (star point) the homogeneous state
is unstable.

Special attention needs the case |φ| = π where a small spot of light is amplified and splits in two separate spots
travelling in opposite directions as shown in Fig. 4a. Both positive and negative wavevectors with values around the
critical ones are selected and then separate moving in opposite regions of the beam area. Our analysis for |φ| = π gives
ωR(k) = ωR(−k) but, in general, ωI(k) 6= ±ωI(−k). This is important because in order to see a propagating stripe,
for instance E ∝ cos(kx+ωt), it would be necessary to have an antisymmetric dispersion ωI(k) and the simultaneous
instability of both positive and negative wavenumbers. This would guarantee that the interfering waves k and −k
have the same velocities. As shown in Fig. 4b this is not the case for off-axis feedback: the phase and group velocities
of opposite waves with critical wavenumbers have opposite signs, and in the diffraction limit δ → π/2 both velocities
are odd functions of kc. Therefore, even if for φ = π both +kc and −kc are unstable, from the linear analysis we
do not expect intensity stripe patterns above threshold. The existence of exact travelling phase patterns as well as
the lack of intensity waves are also known in lasers without feedback [14]. The novelty here is the prediction of a

state in which two waves with wave-vectors ±k travel apart with opposite velocities. In spite of the definite direction
associated to the break of reflection symmetry due to two-point nonlocality, both transverse direction of propagation
are equally linearly amplified. As shown in Fig. 4a, numerical simulations of the model (5) for |φ| = π fairly agree
with these predictions. Even if the linear amplification of both waves has the same strength, one wave is nonlinearly
favoured over the other so that a slightly larger intensity and size of the packet are found on one side with respect
to the other, depending on the sign of the shift. As a matter of fact, one mode in the far field is more intense of the
other, similarly to what is found in systems with drift [16]. We also note that in this case only the Green function
correctly characterises the convective or absolute nature of the instability. The standard evaluation of the instability
solely in terms of the velocities of the external fronts of a perturbation would erroneously describe the convective
instability as absolute. We have seen in fact that here a Gaussian perturbation splits into two wave-packets with
the external fronts moving in opposite directions, as is usually the case for absolute instabilities, even if the signal
eventually decays between the external fronts.

In conclusion, we have reported a general analysis of the effects of off-axis feedback in a large class of optical
cavities and gain media, and shown the threshold dependence on two-point nonlocality, diffusion and positive as
well as negative diffraction. The possibility to observe travelling waves at the onset of the instability in media with
fast relaxation of the polarization is an important effect of nonlocality, that induces the modulations character of
the instability. We have determined the convective and absolute threshold extending our analysis of purely diffusive
systems [6]. In presence of nonlocality phase and group velocities of optical fields can be easily tuned to parallel or
opposite directions, which enable steering and spatial chirping. Surprisingly, for a particular phase of the feedback
loop (φ = π) we have found the simultaneous presence of waves travelling apart. The effect is almost symmetrical in
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the positive and negative directions, even if the off-axis feedback introduces a directional coupling in the transverse
plane. The possibility to amplify an initial spot of light, control its velocity and spatial chirping and even split it in
two counter-propagating signals makes cavities with off-axis feedback a promising candidate in view of applications in
all-optical communications based on the control of light signals, such as optical triggering, switching, routing, delay
lines, beam recovery and steering and in manipulation of microparticles. Finally, our theoretical results formally apply
to a broad class of devices and similar effects can be observed for localized perturbations of any nonlocal and spatially
extended system near the onset of oscillations.
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